3,819 research outputs found

    The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    Get PDF
    AbstractBackgroundCerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles.MethodsAtherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7mg/m3, 20, 60 or 180min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed.ResultsAddition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure.ConclusionsThese results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects

    On Landauer vs. Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport Coefficients

    Get PDF
    The Landauer approach to diffusive transport is mathematically related to the solution of the Boltzmann transport equation, and expressions for the thermoelectric parameters in both formalisms are presented. Quantum mechanical and semiclassical techniques to obtain from a full description of the bandstructure, E(k), the number of conducting channels in the Landauer approach or the transport distribution in the Boltzmann solution are developed and compared. Thermoelectric transport coefficients are evaluated from an atomistic level, full band description of a crystal. Several example calculations for representative bulk materials are presented, and the full band results are related to the more common effective mass formalism. Finally, given a full E(k) for a crystal, a procedure to extract an accurate, effective mass level description is presented.Comment: 33 pages, 8 figure

    Lunar Seismology: An Update on Interior Structure Models

    Get PDF
    An international team of researchers gathered, with the support of the Interna- tional Space Science Institute (ISSI), (1) to review seismological investigations of the lunar interior from the Apollo-era and up until the present and (2) to re-assess our level of knowl- edge and uncertainty on the interior structure of the Moon. A companion paper (Nunn et al. in Space Sci. Rev., submitted) reviews and discusses the Apollo lunar seismic data with the aim of creating a new reference seismic data set for future use by the community. In this study, we first review information pertinent to the interior of the Moon that has become available since the Apollo lunar landings, particularly in the past ten years, from orbiting spacecraft, continuing measurements, modeling studies, and laboratory experiments. Fol- lowing this, we discuss and compare a set of recent published models of the lunar interior, including a detailed review of attenuation and scattering properties of the Moon. Common features and discrepancies between models and moonquake locations provide a first esti- mate of the error bars on the various seismic parameters. Eventually, to assess the influence of model parameterisation and error propagation on inverted seismic velocity models, an inversion test is presented where three different parameterisations are considered. For this purpose, we employ the travel time data set gathered in our companion paper (Nunn et al. in Space Sci. Rev., submitted). The error bars of the inverted seismic velocity models demon- strate that the Apollo lunar seismic data mainly constrain the upper- and mid-mantle struc- ture to a depth of ∼1200 km. While variable, there is some indication for an upper mantle low-velocity zone (depth range 100–250 km), which is compatible with a temperature gradi- ◦ent around 1.7 C/km. This upper mantle thermal gradient could be related to the presence of the thermally anomalous region known as the Procellarum Kreep Terrane, which contains a large amount of heat producing elements

    The GLY2019SER Mutation in LRRK2 is Not Fully Penetrant in Familial Parkinson\u27s Disease: the GenePD Study

    Get PDF
    Background: We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson\u27s disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD. Methods: A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different LRRK2 mutations. Penetrance was estimated in families of LRRK2 carriers with consideration of the inherent bias towards increased penetrance in a familial sample. Results: Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 LRRK2 mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the LRRK2 mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-LRRK2-related PD families. Conclusion: Lifetime penetrance of LRRK2 estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained LRRK2 cases, suggesting that inherited susceptibility factors may modify the penetrance of LRRK2 mutations. In addition, the presence of nine PD phenocopies in the LRRK2 families suggests that these susceptibility factors may also increase the risk of non-LRRK2-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for LRRK2 carriers are independent of the factors which increase PD prevalence in men

    Evaluation of range of motion restriction within the hip joint

    Get PDF
    In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty

    Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at sqrt(s_NN) = 130 GeV

    Full text link
    Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.Comment: 6 pages, RevTeX 3, 4 figures, 307 authors, submitted to Phys. Rev. Lett. on 11 April 2002. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (will be made) publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Net Charge Fluctuations in Au + Au Interactions at sqrt(s_NN) = 130 GeV

    Full text link
    Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.Comment: 6 pages, RevTeX 3, 3 figures, 307 authors, submitted to Phys. Rev. Lett. on 21 March, 2002. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (will be made) publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Measurement of the mid-rapidity transverse energy distribution from sNN=130\sqrt{s_{NN}}=130 GeV Au+Au collisions at RHIC

    Get PDF
    The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).Comment: 307 authors, 6 pages, 4 figures, 1 table, submitted to PRL 4/18/2001; revised version submitted to PRL 5/24/200
    corecore