527 research outputs found

    The role of certain infauna and vascular plants in the mediation of redox reactions in marine sediments

    Get PDF
    The mechanisms by which certain animals and plants affect redox processes in sediments was examined by studying three environments: (1) subtidal sediments dominated by the deposit-feeding polychaete Heteromastus filiformis; (2) a saltmarsh inhabited by the tall form of Spartina alterniflora; and (3) tropical carbonate sediments inhabited by three species of seagrasses. S-35-sulfide production rates were compared to pool sizes of dissolved sulfide and dissolved iron. In all of the sediments studied, rates of sulfide reduction were enhanced by macroorganisms while the rate of turnover of dissolved sulfide increased. The polychaete enhanced microbial activity and redox cycling primarily by subducting particles of organic matter and oxidized iron during sediment reworking. The Spartina species enhanced anaerobic activity by transporting primarily dissolved organic matter and oxidants. Although the final result of both animal and plant activities was the enhancement of sub-surface cycling of sulfur and iron, decreased dissolved sulfide and increased dissolved iron concentrations, the mechanisms which produced these results differed dramatically

    Gas exchange in wetlands: Controls and remote sensing

    Get PDF
    This project was directed toward the quantification of fluxes of gaseous biogenic sulfur compounds from freshwater wetlands. These compounds (primarily hydrogen sulfide (H2S), dimethyl sulfide (DMS), and carbonyl sulfide (OCS)) have been implicated in the regulation of planetary albedo by the formation of microscopic atmospheric aerosols when they oxidize, and the further role of these aerosols as cloud condensation nuclei (CCN). The role of continental sources and sinks for these compounds is poorly understood. The present study was undertaken to quantify the source and sink strength of high latitude wetlands, and to delineate factors that regulate this flux

    Terminal Decomposition and Gaseous Sulfur Release from Tidal Wetlands

    Get PDF
    A summary of the results of a multi-year project which studied the release of biogenic sulfur gases from wetland habitats is reported. This project also included an initial study of factors that control terminal decomposition in temperate salt marsh sediments. This preliminary research was used as a biogeochemical foundation for the interpretation of data collected during other aspects of the work. As time progressed the research moved greatly into freshwaters since it became clear that these habitats had a greater influence on regional and global processes and these habitats were grossly understudied with respect to their role as producers and consumers of atmospheric S compounds. More detailed information is provided as appendices

    Emissions of sulfur gases from wetlands

    Get PDF
    Data on the emissions of sulfur gases from marine and freshwater wetlands are summarized with respect to wetland vegetation type and possible formation mechanisms. The current data base is largest for salt marshes inhabited by Spartina alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH), carbonyl sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being emitted. High emission rates of DMS are associated with vegetation that produces the DMS precursor dimethylsulfonionpropionate (DMSP). Although large quantities of H2S are produced in marshes, only a small percentage escapes to the atmosphere. High latitude marshes emit less sulfur gases than temperate ones, but DMS still dominates. Mangrove-inhabited wetlands also emit less sulfur than temperate S. alterniflora marshes. Few data are available on sulfur gas emissions from freshwater wetlands. In most instances, sulfur emissions from temperate freshwater sites are low. However, some temperate and subtropical freshwater sites are similar in magnitude to those from marine wetlands which do not contain vegetation that produces DMSP. Emissions are low in Alaskan tundra but may be considerably higher in some bogs and fens

    Emissions of biogenic sulfur gases from Alaskan tundra

    Get PDF
    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) were determined for several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol/m(sup -2)H(sup -1) (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Sphagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/m(sup -2)h(sup -1) (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.9 nmol/m(sup -2)h(sup -1). Sulfur emissions from a lake surface were also low at 0.8 nmol/m(sup -2)h(sup -1). Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfure emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea (150-250 nmol/m(sup -2)h(sup -1)). This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfure emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10(exp 8) g/yr. This represents less than 0.001 percent of the estimated annual global flux (approximately 50 Tg) of biogenic sulfur and less than 0.01 percent of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter

    Microbial Iron Reduction by Enrichment Cultures Isolated from Estuarine Sediments

    Get PDF
    Microbial Fe reduction in acetate- and succinate-containing enrichment cultures initiated with an estuarine sediment inoculum was studied. Fe reduction was unaffected when SO42− reduction was inhibited by MoO42−, indicating that both processes could occur independently. Bacterially produced sulfide precipitated as FeS but was not completely responsible for Fe reduction. The separation of oxidized Fe particles from bacteria by dialysis tubing demonstrated that direct bacterial contact was necessary for Fe reduction. Fe reduction in cultures amended with NO3− was delayed until NO3− and NO2− were removed. However, bacterial attachment to oxidized Fe particles in NO3−-amended cultures occurred early during growth in a manner similar to NO3−-free cultures. During late stages of growth, bacteria not attached to Fe particles became pale and swollen, while attached cells remained bright blue when examined by 4′,6-diamidine-2-phenylindole epifluo-rescence microscopy. The presence of added oxidized Mn had no effect on Fe reduction. The results suggested that enzymatic Fe reduction was responsible for reducing Fe in these cultures even in the presence of sulfide and that cells incapable of Fe reduction became unhealthy when Fe(III) was the only available electron acceptor

    Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    Get PDF
    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands

    Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Get PDF
    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions

    Biogeochemical factors which regulate the formation and fate of sulfide in wetlands

    Get PDF
    Coastal wetland areas occupy a small percentage of the terrestrial environment yet are extremely productive regions which support rapid rates of belowground bacterial activity. Wetlands appear to be significant as biogenic sources of gaseous sulfur, carbon, and nitrogen. These gases are important as tracers of man's activities, and they influence atmospheric chemistry. The interactions among wetland biogeochemical processes regulate the anaerobic production of reduced gases and influence the fate of these volatiles. Therefore, spatial and temporal variations in hydrology, salinity, temperature and specification, and growth of vegetation affect the type and magnitude of gas emissions thus hindering predictive estimates of gas flux. Our research is divided into two major components, the first is the biogeochemical characterization of a selected tidal wetland area in terms of factors likely to regulate sulfide flux; the second is a direct measurement of gaseous sulfur flux as related to changes in these biogeochemical conditions. Presently, we are near completion of phase one

    Sulfur gas exchange in Sphagnum-dominated wetlands

    Get PDF
    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S was investigated by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in trophic status. The effects of inorganic S input on the production and emission of gaseous S were also investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, fens within the Experimental Lakes Area (ELA) in Ontario, Canada and in freshwater and marine tundra. Emissions were determined using Teflon enclosures, gas cryotrapping methods, and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed. Dissolved gases were determined by gas stripping followed by GC
    • …
    corecore