6 research outputs found

    A nonlinear model of vortex-induced forces on an oscillating cylinder in a fluid flow

    Full text link
    A nonlinear model relating the imposed motion of a circular cylinder, submerged in a fluid flow, to the transverse force coefficient is presented. The nonlinear fluid system, featuring vortex shedding patterns, limit cycle oscillations and synchronisation, is studied both for swept sine and multisine excitation. A nonparametric nonlinear distortion analysis (FAST) is used to distinguish odd from even nonlinear behaviour. The information which is obtained from the nonlinear analysis is explicitly used in constructing a nonlinear model of the polynomial nonlinear state-space (PNLSS) type. The latter results in a reduction of the number of parameters and an increased accuracy compared to the generic modelling approach where typically no such information of the nonlinearity is used. The obtained model is able to accurately simulate time series of the transverse force coefficient over a wide range of the frequency-amplitude plane of imposed cylinder motion.Comment: Accepted for publication in Journal of Fluids and Structure

    Uncertainty quantification study of the aerodynamic performance of high-altitude propellers

    No full text
    [EN] Performance evaluations for propellers operating at high altitudes are subject to increased uncertainty due to scarce experimental or flight data and difficulties in modeling low Reynolds number flows. For this reason, the Polynomial Chaos Expansion (PCE) method is used in this paper to assess the performance uncertainty of propellers operating at high altitudes. Aleatoric (i.e. linked to the geometry or operating conditions) and epistemic (i.e. linked to the mathematical model describing the flow) uncertainty variables are included in this study to estimate the total uncertainty related to performance predictions made by two physical models, namely 3D RANS with the use of transition model and Blade Element Momentum Theory (BEMT). In order to validate the proposed method, multipoint uncertainty quantification (UQ) studies are performed for two benchmark propeller geometries under various operating conditions for which experimental data are available. The UQ method is further illustrated on a propeller operating at high altitude. The efficacy of UQ with Computational Fluid Dynamics (CFD) and BEMT is compared and the most influential uncertain variables are found using Sobol's total order indices. As a result of the CFD-based uncertainty quantification studies, two major uncertain variables are identified, providing a direction for more computationally affordable UQ studies.S

    Tuning nonlinear state-space models using unconstrained multiple shooting

    Get PDF
    A persisting challenge in nonlinear dynamical modelling is parameter inference from data. Provided that an appropriate model structure was selected, the identification problem is profoundly affected by a choice of initialisation. A particular challenge that may arise is initialisation within a region of the parameter space where the model is not contractive. Exploring such regions is not feasible using the conventional optimisation tools for they require a bounded evaluation of the cost. This work proposes an unconstrained multiple shooting technique, able to mitigate stability issues during the optimisation of nonlinear state-space models. The technique is illustrated on simulation results of a Van der Pol oscillator and benchmark results on a Bouc-Wen hysteretic system

    The Effect of Wind Energy on Microclimate: Lessons Learnt from a CFD Modelling Approach in the Case Study of Chios Island

    No full text
    During the last three decades, rapid growth of wind energy has led to questions regarding the possible impacts of wind farms on local weather and microclimates. Physically, the increased turbulence due to the wind turbine operation affects the mixing processes, may slightly disturb the pressure and temperature distributions downstream of wind farms and may have an impact on natural ecosystems such as the famous mastic tree population located on the island of Chios in the North Aegean Sea. This study explores the wind farms and their wake effects downstream with a particular focus on the effect on the southern part of the island where the mastic trees cultivation is located. The analysis is carried out with the use of the commercial CFD code ANSYS Fluent. Steady state computations of full 3D Navier–Stokes equations, using the k-ε turbulence closure scheme are carried out. The development of the multiple wake effects of the wind farms and their propagation downstream is examined under low and high turbulence intensities. Results clearly indicate that for both test cases there is no impact to the local microclimate and to the mastic Tree population

    Decoupling multivariate functions using a nonparametric filtered tensor decomposition

    Get PDF
    Multivariate functions emerge naturally in a wide variety of data-driven models. Popular choices are expressions in the form of basis expansions or neural networks. While highly effective, the resulting functions tend to be hard to interpret, in part because of the large number of required parameters. Decoupling techniques aim at providing an alternative representation of the nonlinearity. The so-called decoupled form is often a more efficient parameterisation of the relationship while being highly structured, favouring interpretability. In this work two new algorithms, based on filtered tensor decompositions of first order derivative information are introduced. The method returns nonparametric estimates of smooth decoupled functions. Direct applications are found in, i.a. the fields of nonlinear system identification and machine learning.Comment: Preprint submitted to Journal of Mechanical Systems and Signal Processin
    corecore