144 research outputs found

    Changing white into brite adipocytes. Focus on >BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells>

    Get PDF
    Editorial.This review was supported by Grants S2010/BMD-2423 from Comunidad de Madrid and SAF2012-32491 from MINECO (Ministerio de Economia y Competitividad), Spain (to M.-J. Obregon).Peer Reviewe

    Mucin binding reduces colistin antimicrobial activity

    Get PDF
    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance

    Institutional profile: Community for Open Antimicrobial Drug Discovery – crowdsourcing new antibiotics and antifungals

    Full text link
    The Community for Open Antimicrobial Drug Discovery (CO-ADD) is a not-for-profit, collaborative approach to discovering new antibiotics. We access novel chemical diversity from academic synthetic chemists, who collectively possess millions of untested compounds with chemical diversity that lie outside commercial collections. We perform high-throughput antimicrobial screening of pure compounds derived from both synthetic and natural sources free of charge. The resulting data can be used by participants for publication, patenting and development purposes, and is fed back into the research community through an open-access database after a 2-year period during which information is kept confidential to the provider. CO-ADD is fundamentally asking two questions: can the community work together to address the global threat of antimicrobial resistance; and are there as yet undiscovered, novel antimicrobial compounds already present within our diverse global chemistry community?</p

    Silver bullets: a new lustre on an old antimicrobial agent

    Get PDF
    Silver was widely used in medicine to treat bacterial infections in the 19th and early 20th century, up until the discovery and development of the first modern antibiotics in the 1940s, which were markedly more effective. Since then, every new antibiotic introduced to the clinic has led to an associated development of drug resistance. Today, the threat of extensive bacterial resistance to antibiotics has reignited interest in alternative strategies to treat infectious diseases, with silver regaining well-deserved renewed attention. Silver ions are highly disruptive to bacterial integrity and biochemical function, with comparatively minimal toxicity to mammalian cells. This review focuses on the antimicrobial properties of silver and their use in synergistic combination therapy with traditional antibiotic drugs

    Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria

    Get PDF
    Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2_{2} (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application

    Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity

    Get PDF
    S31-201 (NSC 74859) is a chemical probe inhibitor of Stat3 activity, which was identified from the National Cancer Institute chemical libraries by using structure-based virtual screening with a computer model of the Stat3 SH2 domain bound to its Stat3 phosphotyrosine peptide derived from the x-ray crystal structure of the Stat3 beta homodimer. S31-201 inhibits Stat3-Stat3 complex formation and Stat3 DNA-binding and transcriptional activities. Furthermore, S31-201 inhibits growth and induces apoptosis preferentially in tumor cells that contain persistently activated Stat3. Constitutively climerized and active Stat3C and Stat3 SH2 domain rescue tumor cells from S31-201-induced apoptosis. Finally, S31-201 inhibits the expression of the Stat3-regulated genes encoding cyclin D1, BcI-xL, and survivin and inhibits the growth of human breast tumors in vivo. These findings strongly suggest that the antitumor activity of S31-201 is mediated in part through inhibition of aberrant Stat3 activation and provide the proof-of-concept for the potential clinical use of Stat3 inhibitors such as S31-201 in tumors harboring aberrant Stat3

    There is no market for new antibiotics: this allows an open approach to research and development

    Get PDF
    There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a “market” to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New “open source” research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner

    Elucidating the Lipid Binding Properties of Membrane-Active Peptides Using Cyclised Nanodiscs

    Get PDF
    The lipid composition of the cellular membrane plays an important role in a number of biological processes including the binding of membrane-active peptides. Characterization of membrane binding remains challenging, due to the technical limitations associated with the use of standard biophysical techniques and available membrane models. Here, we investigate the lipid binding properties of two membrane-active peptides, VSTx1, a well characterized ion-channel inhibitor, identified from spider venom, that preferentially binds to anionic lipid mixtures, and AA139 an antimicrobial ÎČ-hairpin peptide with uncharacterised lipid binding properties, currently in pre-clinical development. The lipid binding properties of these peptides are elucidated using nanodiscs formed by both linear and circularized (sortase-mediated) forms of a membrane scaffold protein (MSP1D1ΔH5). We find that nanodiscs formed by circularized MSPs—in contrast to those formed by linear MSPs—are sufficiently stable under sample conditions typically used for biophysical measurements (including lipid composition, a range of buffers, temperatures and concentrations). Using these circularized nanodiscs, we are able to extract detailed thermodynamic data using isothermal titration calorimetry (ITC) as well as atomic resolution mapping of the lipid binding interfaces of our isotope labeled peptides using solution-state, heteronuclear, nuclear magnetic resonance (NMR) spectroscopy. This represents a novel and general approach for elucidating the thermodynamics and molecular interface of membrane-active peptides toward flat lipid bilayers of variable composition. Our approach is validated by first determining the thermodynamic parameters and binding interface of VSTx1 toward the lipid bilayer, which shows good agreement with previous studies using lipid micelles and liposomes. The method is then applied to AA139, where the membrane binding properties are unknown. This characterization, involved solving the high-resolution structure of AA139 in solution using NMR spectroscopy and the development of a suitable expression system for isotope labeling. AA139 was found to bind exclusively to anionic membranes with moderate affinity (Kd~low ÎŒM), and was found to have a lipid binding interface involving the termini of the ÎČ-hairpin structure. The preference of AA139 for anionic lipids supports a role for membrane binding in the mode-of-action of this peptide, which is also consistent with its higher inhibitory activity against bacterial cells compared to mammalian cells. The described approach is a powerful method for investigation of the membrane binding properties of this important class of molecules

    Design, synthesis and biological evaluation of 2-nitroimidazopyrazin-one/-es with antitubercular and antiparasitic activity

    Get PDF
    Tuberculosis and parasitic diseases, such as giardiasis, amebiasis, leishmaniasis and trypanosomiasis, all urgently require improved treatment options. Recently, it has been shown that anti-tubercular bicyclic nitroimidazoles such as pretomanid and delamanid have potential as repurposed therapeutics for the treatment of visceral leishmaniasis. Here we show that pretomanid also possesses potent activity against Giardia lamblia and Entamoeba histolytica, thus expanding the therapeutic potential of nitroimidazo-oxazines. Synthetic analogs with the novel nitroimidazopyrazin-one/-e bicyclic nitroimidazole chemotype were designed, synthesized and structure activity relationships generated. Selected derivatives had potent antiparasitic and antitubercular activity whilst maintaining drug-like properties such as low cytotoxicity against mammalian cell lines (CC50 >100 ÎŒM), good metabolic stability in human and mouse liver microsomes and high apparent permeability in a Caco-2 model of intestinal absorption. The kinetic solubility of the new bicyclic derivatives varied, and was found to be a key parameter for future optimization. Taken together, these results suggest promising subclasses of bicyclic nitroimidazoles containing different core architectures have potential for further development
    • 

    corecore