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Abstract

Tuberculosis and parasitic diseases, such as giardiasis, amebiasis, leishmaniasis and trypanosomiasis, all 

urgently require improved treatment options. Recently, it has been shown that anti-tubercular bicyclic 

nitroimidazoles such as pretomanid and delamanid have potential as repurposed therapeutics for the 

treatment of visceral leishmaniasis. Here we show that pretomanid also possesses potent activity against 

Giardia lamblia and Entamoeba histolytica, thus expanding the therapeutic potential of nitroimidazo-
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oxazines. Synthetic analogs with the novel nitroimidazopyrazin-one/-e bicyclic nitroimidazole 

chemotype were designed, synthesized and structure activity relationships generated. Selected 

derivatives had potent antiparasitic and antitubercular activity whilst maintaining drug-like properties 

such as low cytotoxicity, good metabolic stability in liver microsomes and high apparent permeability 

across Caco-2 cells. The kinetic solubility of the new bicyclic derivatives varied, and was found to be a 

key parameter for future optimization. Taken together, these results suggest promising subclasses of 

bicyclic nitroimidazoles containing different core architectures have potential for further development.

Introduction

Infectious diseases are an enormous global health burden. The nitroimidazole class of antibiotics, 

exemplified by metronidazole (1, Figure 1), has a long history of use to treat bacterial and parasitic 

infections.1 The mode of action of nitroimidazoles involves partial reduction of the nitro group and 

subsequent decomposition of the compound to give toxic radical species that cause DNA and protein 

damage.1 The nitro group is activated by different mechanisms, with multiple enzymes involved in 

electron transfer reactions in different target organisms, which accounts for the remarkably broad spectra 

of action of the class. More recently, there have been issues with clinical efficacy that are accompanied, 

in some cases, by development of resistance, which has prompted re-examination of this old, but still 

widely used drug class.

New clinical applications of “old” nitroimidazoles and the development of novel nitroimidazoles with a 

bicyclic core scaffold architecture have significant potential to address the emergent unmet medical need 

imparted by resistant bacteria and parasites. For example, secnidazole (2, Figure 1) was recently 

approved in the USA for the treatment of bacterial vaginosis, despite being available earlier as a generic 

in many jurisdictions.2,3 A pediatric formulation of benznidazole 3 (Figure 1), a 2-nitroimidazole used 

for treatment of Chagas disease caused by the parasite Trypanosoma cruzi, gained FDA approval in 2017 
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for use in children.4 The Drugs for Neglected Diseases initiative (DNDi) is currently investigating 

fexinidazole (4, Figure 1) as a candidate for oral treatment of human African trypanosomiasis (HAT), a 

parasitic infection caused by Trypanosoma brucei spp. that is a public health threat to ~70 million people 

in Africa.5 Furthermore, bicyclic nitroimidazoles, such as delamanid (5, Figure 1) and pretomanid (6, 

PA-824), are promising new antimicrobials being developed for the treatment of tuberculosis (TB),6 the 

number one cause of death from infectious diseases and the ninth leading cause of death worldwide.7 

The nitroimidazo-oxazole 5 gained conditional approval in the European Union in 2014 for the treatment 

of drug resistant TB. This agent was derived from CGI 17341 (7)8,9  and overcame the mutagenic liability 

of 7 (Figure 1).10,11 Meanwhile, 6 was developed concurrently with 5, and is currently in Phase III trials. 

The PK profile of 6 is superior to 5 and this permits once daily dosing, although 6 is less potent.12

Figure 1. Monocyclic nitroimidazoles 1-4 and the bicyclic variants delamanid (5), pretomanid (6), CGI 17341 (7) 

and (R)-PA-824 (8).

Investigations on how 5 and 6 inhibit M. tuberculosis under aerobic and anaerobic growth conditions 

revealed an interesting dual mode of action. Transcriptional profiling of M. tuberculosis treated with 6 

under aerobic growth conditions, gave a response consistent with both the inhibition of cell wall mycolic 

acid biosynthesis and also respiratory poisoning.13 Additionally, it was shown that deazaflavin dependent 
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nitroreductase (Ddn) catalyzed reduction of 6 to the des-nitro 9 metabolite and that this process generated 

nitric oxide.14 Nitric oxide could be detected in Mycobacterium bovis cells treated with 6 under both 

aerobic and anaerobic growth conditions and the rate of NO release in M. bovis cells correlated with the 

anaerobic activities for a series of analogues, supporting the premise that this is the mode of action of 

this class under anaerobic growth conditions in M. tuberculosis.14 In comparison, 1 is only active against 

non-replicating M. tuberculosis under anaerobic growth conditions (<0.06% oxygen).15 

Nitroimidazoxazine 6 was also investigated for activity against other kinetoplastid organisms in multiple 

developmental life stages including L. donovani (promastigote and amastigote), T. brucei brucei 

(procyclic and bloodstream) and T. cruzi (epimastigote and amastigote),16 with the findings prompting 

further mode of action studies in L. donovani. Compound 8, the R- enantiomer of 6, was shown to be 

more effective than the S- enantiomer in an in vivo model of visceral leishmaniasis.16 Recently, an 

NAD(P)H oxidase was identified as the activating nitroreductase (NTR2) for the nitroimidazo-oxazole/-

oxazine.17 However, the monocyclic sulfone metabolite of 4, known to be activated by a type I 

nitroreductase, 18 was only marginally activated by NTR2.17 These results support the hypothesis that 6 

is activated by an alternative mechanism of action in L. donovani under these culture conditions and 

illustrates the biological complexity of the mode of action of various nitroimidazoles.

In the course of development of 5 and 6 as treatments for tuberculosis, over 1000 derivatives were 

prepared.19 The structure activity relationships disclosed to date mostly include compounds with 

modifications to the aryl side chain, with a smaller number of variants that alter the bicyclic core structure 

(Figure 2A). The nitro group and stereochemistry of the side chain have been shown to be critical for 

activity as both 8 and S-des-nitro-PA-824 (9) derivatives were inactive in in vitro cultures at 50 μM.16 

An analog with the nitro group at the 3ʹ position was shown to be inactive, clarifying that the 2ʹ position 

of the nitro group on the 6 bicyclic scaffold is important for activity.20 Replacement of the benzylic 

oxygen with nitrogen led to an amino linked series (10a-b) with favorable in vitro activity and solubility 
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properties.21,22 Modification of the imidazole ring to a pyrazole (11a) or triazole (11b) was detrimental 

to M. tuberculosis activity, as was replacement of the oxygen heteroatom in the oxazine ring with 

sulfoxide (11c), sulfone (11d), amino (11e) or methylene (11f) groups, although a sulfur (11g) 

heteroatom in the ring was tolerated.23

More recent efforts have explored the activity of bicyclic nitroimidazoles against the kinetoplastids 

Leishmania and trypanosomes. DNDi is currently investigating additional nitro-imidazooxazines for 

development against visceral leishmaniasis,24 including DNDI-8219 (12) and DNDI-0690 (13), 6- and 

7-substituted imidazooxazines, as two promising backup candidates.25,26 Interestingly, 

nitroimidazothiazine oxides 14a-d were found to display favorable activity against T. b. brucei, an animal 

infective strain that is commonly used as a model of HAT.19 Moreover, a “thio-delamanid” derivative 

(15) proved to be efficacious against T. cruzi, although it was inactive against Leishmania.27 These 

studies demonstrate that the selectivity profile toward different parasites can be altered by structural 

modifications of the bicyclic scaffold and that different subclasses of the bicyclic nitroimidazoles expand 

the potential therapeutic scope of this antimicrobial class.

We reasoned that bicyclic nitroimidazole derivatives could have potential against an even wider range of 

organisms than Leishmania and trypanosomes. Previously we found that 4(5)-nitroimidazoles (16)28 had 

potent activity against Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis and Clostridium 

difficile (Figure 2B) and therefore it was hypothesized that 6 might also have activity against these 

organisms. Anaerobic protozoa such as G. lamblia and E. histolytica and the anaerobic bacteria C. 

difficile occupy the gut under reduced oxygen tension and cause diarrheal infections. These organisms 

spread by the fecal oral route through stable cyst forms for the protozoa or through spores for C. difficile. 

Metronidazole 1 can be used therapeutically for infections caused by these organisms, but alternative 

treatment options are desirable. Furthermore, cyclizing the 4(5)-nitroimidazoles 16 from the 1′ imidazole 
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ring position to the carboxamide nitrogen could produce new bicyclic nitroimidazopyrazin-one/-e 

scaffolds. These could potentially extend the spectra of biological activity to include M. tuberculosis and 

result in altered structure activity relationships against a panel of parasitic organisms. Previous studies 

have shown that compounds containing the imidazopyrazinone scaffold have a range of different 

biological activities, including agonism of the GABAA receptor29, antagonism of the 

ionotropic transmembrane receptor,30,31 modulation of ion channels to control arrhythmia32 and 

inhibition of M. tuberculosis glutamine synthetase33. However, no studies have investigated the 

antimicrobial activity of a nitrated derivative of this class.

We now report the findings from an evaluation of 6 against a wide range of organisms, and the subsequent 

design, synthesis and biological evaluation of novel bicyclic nitroimidazoles, nitroimidazopyrazinones 

(17) and nitroimidazopyrazines (18) (Figure 2B), derived from the 4(5)-nitroimidazole scaffold 16 

previously reported.28 Given the potential for activity against many different organisms, compounds were 

screened against a wide range of microorganisms including: G. lamblia, E. histolytica, T. b. brucei, L. 

donovani, M. tuberculosis, C. difficile, Cryptoccoccus neoformans, Candida albicans and representative 

ESKAPE bacteria: Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas 

aeruginosa and Actinetobacter baumannii. Derivatives were counter-screened for cytotoxicity against 

mammalian liver and kidney cell lines. Preferred derivatives with favorable antimicrobial or antiparasitic 

activity were then evaluated for therapeutic properties including metabolic stability, plasma protein 

binding and intestinal permeability. Most of the compounds were also assessed for aqueous kinetic 

solubility. This report presents the first description of structure activity relationships and evaluation of 

nitroimidazopyrazin-ones/es for antimicrobial and antiparasitic activity with therapeutic potential.
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Figure 2. A) Structural variation of bicyclic nitroimidazoles described in the literature and B) the novel 

nitroimidazopyrazinones and nitroimidazopyrazinones, developed by cyclizing the 4(5)-nitroimidazole 

framework, described here.

Chemistry

Design and Synthesis of Bicyclic Nitroimidazoles with Variation at R1, R2 = R3 = H

In previous work28 a set of amide-substituted monocyclic nitroimidazoles were prepared and it was 

hypothesized for this study that linking the amide and imidazole nitrogen could form a bicyclic 

nitroimidazopyrazinone system, similar to the pretomanid 6 core (Figure 2B). A library of 

nitroimidazopyrazinones 17a-t were prepared with different functional groups at R1 designed to explore 

a range of physicochemical properties (Scheme 1). Initial biological results indicated that benzylic R1 

groups were favorable for antimicrobial and antiparasitic activity. The library was therefore tailored to 

contain analogs with a number of different benzyl substituted R1 groups (17b-j), including derivative 17c 

with a 4-OCF3-substituted benzyl group similar to pretomanid, and analogs with substitutions at the 3′ 

and 2′ positions. Compound 17k was prepared with R1 = CH2-(2-pyridyl) to introduce a hydrogen bond 
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acceptor and to impart more polarity and improve aqueous solubility. A methyl group was introduced at 

the benzylic position (17l) to increase the lipophilicity, bulk and potentially restrict the conformation of 

the side chain. Two phenethylene derivatives (17m-n) were prepared to investigate the effect of spacing 

the aromatic ring further from the bicyclic core. Derivatives with polar side chain R1 groups were also 

synthesized, including ethyl acetate 17o, ethyl hydroxyl 17p, morpholine derivatives 17q-r and the 

carboxamide group (17s). Compound 17t with R1 = cyclohexyl group was prepared to investigate the 

effect of a bulky aliphatic group at this position.

Initially, nitroimidazopyrazinones 17a-f, 17k-l, 17n and 17t were prepared from 4(5)-nitroimidazole 

carboxamides 16a-f , 16k-l, 16n and 16t28 by cyclizing the 1′ imidazole to the 2′ free amide nitrogen 

(route 1, Scheme 1). This was achieved by alkylating 4(5)-nitroimidazoles with bromoacetaldehyde 

diethyl acetal under basic conditions (K2CO3) which strongly favored the 4-nitro regioisomer product.34 

Secondly, microwave heating (µW 120°C) of 19a-f, 19k-l, 19n and 19t under acidic conditions afforded 

the bicyclic products 17a-f, 17k-l, 17n and 17t. This synthesis was based on the preparation of des-nitro-

imidazopyrazinone 20a, as previously described by Prévot and Leumann;35 however, microwave heating 

at higher temperatures and for shorter periods than conventional reflux facilitated analog generation for 

both steps. Secondly, inclusion of a cosolvent (aq. 2M HCl :1,4-dioxane 1:1) was necessary to solubilize 

the secondary amide starting material and achieve conversion to the desired products 17b-f, 17k-l, 17n 

and 17t. With this approach, products often precipitated from the reaction mixture and could be isolated 

in high purity by filtration and washes (H2O) alone, especially if the intermediate had been purified by 

chromatography. Alternatively, the products were purified by recrystallization. In the 1H NMR, the 

imidazopyrazinone R2 and R3 proton groups were typically two doublets (J = ~5.9 Hz) each integrating 

for 1 proton at ~ δ7.4 ppm and ~ δ7.6 ppm, respectively. Furthermore, both NMR (2D HMBC) 

experiments and an X-ray crystal structure of 17a confirmed the 2-position of the nitro group (Supporting 

Information, Figure S1).
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A second approach to prepare bicyclic nitroimidazoles 17g-j, 17m, 17o and 17q-s was developed as 

shown in route 2, Scheme 1. This method was more convergent as it eliminated the need to prepare 4(5)-

nitroimidazole intermediates of each derivative. Route 2 involved alkylation of 17a with alkyl halides 

under basic conditions (carbonate base) to form 17g-j, 17m, 17o and 17q-s. This approach also produced 

the minor O-alkylated regioisomer in some cases. This was considered advantageous because the 

alternative pyrazine ring was anticipated to have different biological activity and properties. In all cases, 

use of K2CO3 or Cs2CO3 in DMF resulted in > 10:1 ratio of the pyrazinone to pyrazine derivatives. 

Reaction with Ag2CO3 in toluene and heating as described in the literature,36,37 was briefly explored and 

found to increase the ratio of the minor imidazopyrazine isomer, with pyrazinone:pyrazine ratios of 2:1 

for 17g:18g and 17i:18i. Unfortunately, the Ag2CO3/toluene method resulted in unreacted starting 

material and a greater number of side products compared to K2CO3 or Cs2CO3 in DMF. This complicated 

the separation of 18g to the required >95% purity for biological assay. Therefore, isomers 17m and 18m 

were prepared using K2CO3 in DMF.

Nitroimidazopyrazines were readily distinguished from nitroimidazopyrazinones as they were more 

lipophilic, and thus were more strongly retained on C18 silica and more weakly retained on normal phase 

silica. Furthermore, in the 1H NMR the resonance due to the OCH2 of 18i and 18m was 0.4–0.6 ppm 

further downfield than the corresponding resonance due to the NCH2 group in the pyrazinone scaffold 

(eg 18i/17i δ 5.64 vs 5.21 ppm). In the 13C NMR spectrum, the corresponding OCH2 resonance was also 

shifted 17–19 ppm downfield for 18i and 18m compared to the corresponding NCH2 resonance (eg 

18i/17i δ 62.7 vs 45.7 ppm).
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Scheme 1. Synthesis of imidazopyrazin-ones/-es 17a-t, 18i and 18m by route 1) condensation and dehydration 

via nitroimidazole carboxamide intermediates or route 2) alkylation of 17a. i) Bromoacetaldehyde diethyl acetal, 

K2CO3, µW 180 °C, 69%–quant. yield, ii) 2M aq. HCl (10 vol), 1,4-dioxane (10 vol), µW 120 ºC, 42–87%, (17a: 

5% aq. HCl, reflux, 66%); iii) alkyl/benzyl halide, K2CO3/Cs2CO3, DMF, rt – µW 120 ºC or Ag2CO3/toluene, 80 

ºC as detailed in the experimental, 3-84% iv) K2CO3, MeOH, rt, 45%. Compounds 18g-h and 18q were detected 

but not isolated in pure form.

Des-nitro Derivatives

Des-nitro derivatives 20b-c were prepared as negative control compounds, essentially as described for 

the nitrated series above (Scheme 2). It was hypothesized that these compounds should be biologically 

inactive if the parent compounds had a mechanism of action involving reduction of the nitro group.
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Scheme 2. Synthesis of des-nitro imidazopyrazinones 20b-c. i) (COCl)2, cat. DMF, DCM, 0 °C  rt, then conc. 

NH4OH, 73%28 ii) SOCl2, reflux, then benzyl amine, 69%; iii) bromoacetaldehyde diethyl acetal, K2CO3, µW 120–

180 °C, 81–92%; iv) For 20a: 5% aq. HCl, reflux, 50%; For 20b: 5% aq. HCl, 80 °C, 39%; v) 4-fluorobenzylamine, 

K2CO3, DMF, rt, 19%.

Design and Synthesis of Nitroimidazopyrazin-ones/es with Modifications at R2, R3

We then explored different variations at the R2 and R3 positions, established a shortened route to 

synthesize the imidazopyrazinone core and further investigated the activity of the imidazopyrazine 

scaffold (Scheme 3). Both core scaffolds were prepared with three different combinations of R2 and R3 

groups in order to assess how functionalization at these sites could affect activity against different 

organisms. Since benzyl groups at R1 were favorable for biological activity, derivatives 24a-e containing 

R2 = Ph and R3 = H, but including polar substituents (CH2CH2OAc or CH2CH2OH) at R1 to counteract 

the increase in compound lipophilicity, were prepared. The effect of a methyl group at R2 = CH3, as a 

small, non-polar substituent (derivatives 25a-m) was also assessed. For the series with R2 = CH3, both 

polar and non-polar substituents at R1, including R1 = CH2CH2OAc, CH2CH2OH and several preferred 

benzyl derivatives were investigated. Lastly, matched pair analogs with R2 = R3 = CH3 (26a-i) with the 

preferred benzyl substituents at R1 were prepared.
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The synthesis of the imidazopyrazinone 24a (R2 = Ph) was initially performed as in Scheme 3 in a similar 

manner as described earlier. Intermediate 16a was alkylated with 2-bromoacetophenone at room 

temperature with K2CO3 as a base catalyst to yield 27a, which was then purified by silica 

chromatography. The condensation-dehydration cyclization of 27a was achieved with 2M aq. HCl and 

1,4-dioxane under microwave irradiation to form the phenyl substituted imidazopyrazinone core 24a. To 

synthesize the imidazopyrazinone cores with R2 = CH3 (25a) and R2
 = R3

 = CH3 (26a), a more concise 

synthesis was designed that involved a two-step, one-pot tandem alkylation-dehydration reaction 

(Scheme 3). For 25a and 26a, this procedure worked well. The conditions were mild as both steps of the 

reaction (alkylation and condensation-dehydration) proceeded at room temperature and the products were 

obtained in high purity after filtration and washes (H2O and MeOH) of the precipitate (67% yield over 

two steps). The one pot, two-step methodology was also tested for 24a (R2 = phenyl), although 

conversion and yields were reduced (40% isolated yield with product of 57% purity: Abs% UV254 nm 

LCMS) due to impurities that formed in both steps because of the different reactivity of the alkylation 

and condensation-dehydration steps. In addition, product 24a was slightly soluble in the methanol used 

in the wash step to remove more non-polar impurities. An intermediate work-up procedure, or 

optimization of the initial alkylation conditions could be explored to improve this method for 24a.

Alkylation of imidazopyrazinones 24a, 25a and 26a under basic conditions provided both the N- and O- 

alkylated regioisomers that were readily separated by chromatography. Alkylation conditions that used 

heating in the presence of Cs2CO3 generally favored the O-alkylated imidazopyrazine product. The 

method employed here was sufficient to provide both possible isomers for biological evaluation, but 

further optimization of the reaction conditions could be explored in the future to alter the ratio of N- to 

O- alkylated product.38 Again, the acetate groups were removed using K2CO3/MeOH to give the 

nitroimidazopyrazin-one/-es 24d-e and 25d-e.
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Scheme 3. Synthesis of nitroimidazopyrazinon-one/-es 24a-e, 25a-m and 26a-i with variations at R2 and R3. i) 2-

Bromoacetophenone, K2CO3, DMF, rt, 60%; ii) 2M HCl, 1,4-dioxane, µW 120 ºC, 84%; iii) 25a & 26a: α-halo 

ketone, K2CO3, DMF, rt; iv) 25a & 26a: 2M HCl, 1,4-dioxane, rt, 40–67% over two steps; v) K2CO3 or Cs2CO3, 

DMF, rt – µW 80 ºC, 41–90% yield inclusive of both isomers; vi) K2CO3, MeOH, rt, 10–83% yield. Compound 

25k was detected but not isolated.
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Results and Discussion

Antiparasitic and Antimicrobial Activity of Pretomanid

Both pretomanid 6 and its enantiomer 8 were found to be ~2-fold more active than metronidazole 1 

against G. lamblia (Table 1). Both enantiomers also had activity against E. histolytica, with 8 active at 

comparable levels to 1, and 6 ~2-fold less active than 1. Compound 6 had moderate activity against C. 

difficile (MIC = 4 µg/mL), which was 8-fold less potent than metronidazole 1 (MIC = 0.5 µg/mL) (Table 

1). These results expand the spectrum of action of 6, which was previously described to inhibit M. 

tuberculosis, Leishmania spp. and Trypanosoma spp.16,26 The enantiomers 6/8 have been reported to have 

more significant differences in activities against L. donovani, trypanosomes and M. tuberculosis.16 For 

example, 8 was ~5-fold more active than 6 against L. donovani in both the promastigote and amastigote 

(intracellular macrophage) assays.16 While 6 had weak activity against T. cruzi and T. b. brucei in the 

parasite life stages relevant to mammalian infection, 8 had slightly enhanced activity, similar to the 

results against L. donovani.16 In contrast, 8 was inactive against M. tuberculosis.39 Compound 8 has 

previously been shown to bind to the M. tuberculosis Ddn enzyme involved in reductive activation of 6, 

but it could not be turned over by the enzyme.39 These differences in selectivity of the enantiomers 6 and 

8 likely indicate differences in the mode of action, respective targets, or uptake of compound by the 

respective organisms. Nonetheless, the results suggest that 6 or newer derivatives may also be repurposed 

toward enteric parasites. More potent compounds could also potentially be identified in the future by 

screening a library of pretomanid analogs from the TB alliance/DNDi collections, given that more than 

1000 analogs have been prepared.19

Page 14 of 90

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1. Activity of pretomanid (6) against enteric pathogens. 

Antiparasitic

IC50 (µM) (pIC50 ± SE)

Antibacterial

MIC (µg/mL) 
Compound

G. lamblia E. histolytica C. difficile

Metronidazole (1) 7.2 (5.1 ± 0.02) 4.3 (5.4 ± 0.02) 0.5

Pretomanid (6) 3.0 (5.5 ± 0.02) 9.3 (5.0 ± 0.03) 4

(R)-PA-824 (8) 3.2 (5.5 ± 0.08) 5.3 (5.3 ± 0.08) N.D

SAR of Bicyclic Nitroimidazoles with Variation at R1, R2 = R3 = H

Given the broad activity of pretomanid 6, bicyclic nitroimidazoles 17a-t, 18i and 18m were tested against 

a wide panel of organisms. These organisms included M. tuberculosis grown under aerobic (normoxic) 

and non-replicating (hypoxic) conditions, G. lamblia and E. histolytica, L. donovani (intracellular 

amastigote assay), T. b. brucei and C. difficile. To gain a clear understanding of the spectra of action, 

compounds were also screened against representative ESKAPE bacterial pathogens S. aureus (ATCC 

43300), E. coli (ATCC 25922), K. pneumoniae (ATCC 700603), A. baumannii (ATCC 19606) and P. 

aeruginosa (ATCC 27853) and fungal pathogens, C. albicans (ATCC 90028) and C. neoformans (H99 

type strain, ATCC 208821) at the Community for Open Antimicrobial Drug Discovery (CO-ADD).40 

The cytotoxicity against mammalian liver HepG2 and kidney HEK293 cell lines was also evaluated.

Gratifyingly, several compounds showed potent activity against M. tuberculosis, G. lamblia and T. b. 

brucei with the SAR discussed in detail below (Table 2). The N- and O-alkylated regioisomers had 

varying profiles, with the nitroimidazopyrazinones 17a-t consistently lacking activity against L. 

donovani, E. histolytica or C. difficile. However, nitroimidazopyrazine 18m was distinguished by its 

activity against E. histolytica (IC50 = 7.8 µM, Supporting Information, Table S5) and also G. lamblia 

(IC50 = 5.2 µM), despite no activity against M. tuberculosis compared to the imidazopyrazinone 
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derivative 17m. The screen against ESKAPE and fungal pathogens revealed that these compounds were 

selective for M. tuberculosis, G. lamblia and T. b. brucei as they were not active against the other 

organisms (MIC >32 µg/mL) (Supporting Information, Table S5). Importantly, the majority of the 

compounds were not cytotoxic at the highest concentration tested (CC50 >100 µM) against mammalian 

liver HepG2 and kidney HEK293 cell lines (CC50 > 100 µM) (Supporting Information, Table S5). 

However, compounds 17b (R1 = CH2Ph) and 17t (R1 = cyclohexyl) were moderately cytotoxic against 

mammalian liver and kidney cell lines (CC50 = 98–123 µM) compared to compounds 17a and 17c-s 

(CC50 >100 µM). Nitroimidazopyrazine derivatives 18i and 18m were also not cytotoxic against 

mammalian cell lines (CC50 >100 µM). This activity profile suggests a specific mechanism of action in 

M. tuberculosis, G. lamblia and T. b. brucei rather than a general non-specific toxic effect.

Nitroimidazopyrazinones 17b-i with a monosubstituted benzyl group at R1 displayed potent activity 

against M. tuberculosis (MICnormoxia = 0.06 –1 µg/mL) at levels up to 2-fold better than pretomanid 6 

(MICnormoxia = 0.25–0.5 µg/mL). There was a slight preference for substitution at the 3′ over the 2′ and 4′ 

positions of the phenyl group (cf. 17f-g with 17i and 17c-d). However, there was otherwise little 

electronic effect; both electron donating (17g, R1 = CH2(3-CH3-Ph)) and withdrawing substituents (17h, 

R1 = CH2(3-CF3-Ph)) had equal activity (MICnormoxia = 0.06 µg/mL). Poor solubility of 17j in the 

compound stock solutions was suspected to have contributed to the unexpected weak activity of this 

disubstituted-fluorine derivative against M. tuberculosis and the other organisms. Replacement of the 

phenyl group (17b) with a pyridyl moiety (17k) was unfavorable and resulted in a loss of activity against 

M. tuberculosis (17k MICnormoxia >32 µg/mL). A methyl substituent at the benzylic position (17l) was 

well tolerated (MICnormoxia = 0.5 µg/mL), but extension of the aromatic linkage with an ethyl bridge in 

the phenethyl derivatives (17m-n) resulted in a 16–32-fold loss of activity against M. tuberculosis, with 

bacteriostatic activity of MICnormoxia = 4-8 µg/mL compared to respective benzyl derivatives 17c-d with 

MICnormoxia = 0.125-0.5 µg/mL. None of the derivatives with polar groups at R1 (17o-s) had activity 
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against M. tuberculosis (MICnormoxia >32 µg/mL). Lastly, compound 17t with an aliphatic cyclohexyl 

group at R1 was also inactive (MICnormoxia >32 µg/mL), indicating a preference for an aromatic group 

rather than non-specific lipophilic group.

In general, compounds with activity against M. tuberculosis grown in normoxic conditions were also 

active against non-replicating M. tuberculosis under hypoxic conditions, although generally 2–16-fold 

less active. By comparison, isoniazid, a compound that inhibits cell wall synthesis in aerobically respiring 

M. tuberculosis (MIC = 0.04 µg/mL), did not inhibit growth in the hypoxic conditions (MIC >5 µg/mL). 

Metronidazole 1 was inactive (MIC >32 µg/mL) in this hypoxic-recovery assay, indicating the medium 

was not sufficiently anaerobic to show activity of 1 against M. tuberculosis.

The structure activity relationships observed for G. lamblia were similar to M. tuberculosis and several 

compounds (17c-d, 17f, 17l-n) were found to have improved activity (up to 4-fold) relative to 

metronidazole 1 (IC50 = 1.6 to 3.5 µM cf. 1 IC50 = 7.2 µM). Interestingly, an expanded range of the 

derivatives with lipophilic R1 groups had potent activity against G. lamblia. For example, 17m (R1 = 

CH2CH2(4-OCF3-Ph)) and 17n (R1 = CH2CH2(4-Me-Ph)) had similar activity to the benzyl-substituted 

analogs 17c-d against G. lamblia (IC50 = 1.6–3.2 µM vs 3.4–3.5 µM, respectively). In addition, the 

cyclohexyl derivative 17t was potent against G. lamblia at equivalent levels to the metronidazole 1 

control (17t G. lamblia IC50 = 5.2 µM).

 

There were also similar trends in the SAR observed against T. b. brucei although with a number of 

differences compared to M. tuberculosis and G. lamblia. For example, the activity of the benzyl series 

17b-i against T. b. brucei was sensitive to the particular nature of the benzyl substitution. For example, 

17c (R1 = CH2(4-OCF3-Ph)) and 17e (R1 = CH2(4-F-Ph)) were active against T. b. brucei (IC50 = 1.4 and 

2.9 µM, respectively), but compounds 17b (R1 = CH2Ph) and 17f (R1 = CH2(3-OCF3-Ph)) had reduced 
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activity at the highest concentrations tested (40 and 16 µM, respectively). Another difference observed 

for T. b. brucei was an increased tolerance for polar substituents at R1. For example, compounds with 

polar ethyl acetate (17o) or morpholino groups (17q-r) displayed moderate activity against T. b. brucei 

(IC50 = 2.9–6.5 µM), whereas against M. tuberculosis and G. lamblia these examples were essentially 

devoid of activity. The unsubstituted imidazopyrazinone compound 17a with H at R1 displayed some 

activity against T. b. brucei (97% inhibition at 40 µM) but was insufficiently active at 20 µM to determine 

an IC50 value. The cyclohexyl derivative 17t also had good activity against T. b. brucei (IC50 = 1.4 µM), 

similarly to G. lamblia. These examples demonstrate that it is possible to identify compounds with 

selective antiparasitic activity, although all compounds with M. tuberculosis activity tended to display 

some activity towards parasites. The selectivity observed for the particular organisms may be due to 

differences in the compound activation or uptake of the compounds and is an area of ongoing 

investigation.

Table 2. Activity of imidazopyrazinones and imidazopyrazinones with variation at R1, R2 = R3 = H.

Compound Antibacterial

MIC (µg/mL)

Antiparasitic

IC50 (µM) (pIC50 ± SE)d

No. Core R1

Molecular 

weight 

(g/mol) M. 

tuberculosisa

normoxia

M. 

tuberculosisa 

hypoxia

G. lambliab T. b. bruceic

Metronidazole 1 171.2 >32 >32 7.2 (5.1 ± 0.02) >40 (<4.4)

Pretomanid 6 359.3 0.25-0.5 1 3.0 (5.5 ± 0.02) 19 (4.7 ± 2.4)

17a A H 180.1 >32 >32 >25 (<4.6) 97% I @ 40 µM

17b A CH2Ph 270.2 0.5-1 4-8 5.0 (5.3 ± 0.05) 73%I @ 40 µM

17c A CH2(4-OCF3-Ph) 354.2 0.5 1-4 3.5 (5.5 ± 0.01) 1.4 (5.9 ± 0.08)

17d A CH2(4-CH3-Ph) 284.3 0.125 1-4 3.4 (5.5 ± 0.03) >40 (<4.4)

17e A CH2(4-F-Ph) 288.2 1 2 6.4 (5.2 ± 0.07) 2.9 (5.5 ± 0.41)

17f A CH2(3-OCF3-Ph) 354.2 0.125 0.5-2 1.7 (5.8 ± 0.03) 38% I @ 16 µM
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Compound Antibacterial

MIC (µg/mL)

Antiparasitic

IC50 (µM) (pIC50 ± SE)d

No. Core R1

Molecular 

weight 

(g/mol) M. 

tuberculosisa

normoxia

M. 

tuberculosisa 

hypoxia

G. lambliab T. b. bruceic

17g A CH2(3-CH3-Ph) 284.3 0.06 70-90% I @ 

0.125-8 

µg/mL

9.0 (5.0 ± 0.03) 5.4 (5.3 ± 0.23)

17h A CH2(3-CF3-Ph) 338.2 0.06 70-90% I @ 

0.06-16 

µg/mL

7.1 (5.1 ± 0.03) 5.3 (5.3 ± 0.18)

17i A CH2(2-OCF3-Ph) 354.2 1 8 8.2 (5.1 ± 0.03) 6.0 (5.2 ± 1.5)

17j A CH2(2,4-F-Ph) 306.2 16-32 >32 >50 (<4.3) >40 (<4.4)

17k A CH2(2-pyridyl) 271.2 >32 >32 14 (4.8 ± 0.05) 9.7 (5.0 ± 0.18)

17l A CHMe(4-F-Ph) 302.3 0.5 4-6.3 2.1 (5.7 ± 0.03) 94% I @ 40 µM

17m A CH2CH2(4-OCF3-

Ph)

368.3 8* (70%I) >32 1.6 (5.8 ± 0.04) 44%I @ 40 µM

17n A CH2CH2(4-CH3-

Ph)

298.3 4* (78%I) >32 3.2 (5.5 ± 0.04) >40 (<4.4)

17o A CH2CH2OAc 266.2 >32 >32 65 (4.2 ± 0.03) 6.5 (5.2 ± 0.22)

17p A CH2CH2OH 224.2 >32 >32 >50 (<4.3) 87%I @ 40 µM

17q A CH2CH2-

morpholine

293.3 >32 >32 ~50 (~4.3) 2.9 (5.5 ± 0.14)

17r A CH2CO-

morpholine

307.3 >32 >32 >50 (<4.3) 4.1 (5.4 ± 6.8)

17s A CH2CONH2 237.2 >32 >32 >50 (<4.3) >40 (<4.4)

17t A cyclohexyl 262.3 >32 >32 5.2 (5.3 ± 0.03) 1.4 (5.9 ± 0.13)

18i B CH2(2-OCF3-Ph) 354.2 >32 >32 12 (4.9 ± 0.05) >40 (<4.4)

18m B CH2CH2(4-OCF3-

Ph)

368.3 >32 >32 5.2 (5.3 ± 0.03) N.D

a H37Rv, M. tuberculosis-normoxia primary screen at 32 µg/mL n = 3, M. tuberculosis-hypoxia primary screen at 32 µg/mL n = 1–3, MIC-

normoxia/hypoxia of active compounds n = 3–6. Isoniazid control M. tuberculosis-normoxia MIC = 0.04 µg/mL, M. tuberculosis-hypoxia 
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MIC >5 µg/mL; b WB; c pentamidine control IC50 = 0.002 µM, diminazine aceturate IC50 = 0.062 µM, puromycin IC50 = 0.05 µM, n = 2; d 

the percentage inhibition (%I) at the highest concentration tested is reported for compounds that were not sufficiently active to determine 

an IC50. *Increasing concentrations of compound did not inhibit growth further.

Comparison of Bicyclic Antimicrobial Activity to Monocyclic 4- and 4(5)-Nitroimidazole 

Carboxamide Analogs

Given the activity of the bicyclic derivatives against M. tuberculosis, we screened a number of previously 

reported28 4-nitroimidazole carboxamides 28b-k and 4(5)-nitroimidazole carboxamides 16a, 16c, 16e 

and 16f, along with intermediates 16b and 16d prepared for this study, against M. tuberculosis under 

normoxic and hypoxic growth conditions. This would allow us to compare the SAR between the 

monocyclic and bicyclic series. Note that the 2-nitro group of the imidazopyrazinones occupies the 

equivalent position of the nitro group in the 4-nitroimidazole series (Figure 3). Interestingly, none of the 

4- or 4(5)- monocyclic nitroimidazoles tested were active against M. tuberculosis grown aerobically at 

32 µg/mL (Supporting Information, Table S6). Under hypoxic growth conditions, weak activity was 

observed for 28j and 16c (60-75% inhibition at 32 µg/mL), but this also correlated with increased 

cytotoxicity against the mammalian kidney cell line for these compounds (Supporting Information, Table 

S6). Therefore, the rigid, bicyclic nature of 17b-f appears necessary for antitubercular activity, especially 

against actively dividing M. tuberculosis cells, but is not essential for activity against other parasites. A 

comparison of the activity of the 4- and 4(5)- nitroimidazole carboxamide series with that of the bicyclic 

derivatives is summarized in Figure 3.
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Figure 3. 4-Nitroimidazoles 28b-k and 4(5)-nitroimidazole carboxamide 16b-f, compared to imidazopyrazinones 

17b-f.

Evaluation of Des-nitro Derivatives for Biological Activity

Two des-nitro derivatives 20b-c were prepared as negative control compounds, to confirm that the 

proposed mode of action relies on reduction of the nitro group. The des-nitro imidazopyrazinone 

derivatives 20b-c were tested for activity and indeed, were found to be inactive against M. tuberculosis, 

G. lamblia, T. b. brucei and E. histolytica (complete profiling results are detailed in the Supporting 

Information, Table S7). This result is consistent with the inactivity of a des-nitro pretomanid analog 9 

against M. tuberculosis under both aerobic and anaerobic growth (MIC >160 µM and >500 µM, 

respectively),41 and supports a critical role for the nitro group in the mechanism of action of 

nitroimidazopyrazinones.

SAR of Bicyclic Nitroimidazoles with Variation at R2 = Ph or CH3, R3 = H or CH3

Compounds 24a-e, 25a-m and 26a-i with R2 = Ph or CH3 and R3 = H or CH3 were evaluated for 

antiparasitic and antimicrobial in the same manner as described for 17a-t, 18i, 18m (Table 3). Both the 

R2 and R3 sites were found to influence activity against different pathogens to varying degrees. 

Interestingly, the modifications R2 and R3 on the imidazopyrazinone series was found to be particularly 

beneficial for activity against T. b. brucei. A number of imidazopyrazinones were active against T. b. 

brucei between 0.2 and 0.9 µM (24a-b, 25b, 25f, 25h, 26b, 26d, 26f and 26h). While some of the 
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pyrazine matched pairs generally lost activity, several compounds (24c, 25m, 26e, 26g and 26i) 

maintained activity in the 1.2–2.2 µM range. Furthermore, when R1 = CH2CH2OAc, compound 24b (R2 

= Ph) and 25b (R2 = CH3) showed 7.6–10-fold improvement compared to 17o (R2 = H). This benefit was 

also clear for the derivatives with benzyl substitutions at R1. For example, compound 17f (R1 = CH2(3-

OCF3-Ph), R2 = H, R3= H) showed incomplete inhibition at 16 µM, while the matched pairs 25j (R2 = 

CH3, R3= H) and 26f (R2 = CH3, R3= CH3) inhibited T. b. brucei at 1.1 and 0.40 µM, respectively. This 

last example also demonstrates a slight preference for methyl group substitutions at both R2 and R3 on 

the pyrazinone ring, as this resulted in activity that was consistently about two-fold improved.

The methyl and phenyl groups explored at R2 and R3 did not result in any overall improvement or loss 

of activity against G. lamblia, as the activity was generally in the same range. As observed for 

imidazopyrazine 18m, the expanded series of imidazopyrazine derivatives also had activity against G. 

lamblia. When R2 = Ph, R3 = H, the pyrazine derivatives 24c and 24e performed better than the 

pyrazinone analogs 24b and 24d against G. lamblia. However, similar activity was observed when R2
 = 

CH3, R3 = H (e.g. matched pair 25h and 25i) and R2 = CH3, R3 = CH3 (e.g. matched pair 26d and 26e), 

although the pyrazine was slightly worse by two-fold for a few derivatives.

Activity against E. histolytica was also improved for the imidazopyrazinone series when R2= CH3 and 

R3= CH3. Both imidazopyrazinones (e.g 26b and 26f) and imidazopyrazines (e.g 26c and 26g) were 

active, with a slight preference for the imidazopyrazinone core. Despite this improvement, none of the 

derivatives had activity comparable to metronidazole 1, with the active derivatives having only moderate 

to weak activity (10–34 µM). This suggests distinct requirements for activity in E. histolytica compared 

to T. b. brucei and G. lamblia. Nonetheless, it is possible that further modification of the scaffold may 

lead to identification of an optimal “sweet spot” for activity against E. histolytica.
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Modifications explored at R2 and R3 were mostly detrimental for activity against M. tuberculosis. 

Activity against M. tuberculosis activity was abolished when R2 = CH3 or Ph and R3 = H. Consistent with 

the previous SAR study, all of the imidazopyrazines were found to be inactive (MIC >32 µg/mL). 

Nonetheless, activity was retained for three imidazopyrazinone examples (26b, 26d and 26f) when R2 = 

R3 = CH3 and R1 was a benzyl group. Compounds 26b, 26d and 26f also displayed activity against M. 

tuberculosis under hypoxic growth conditions and against G. lamblia, E. histolytica and T. b. brucei. 

These results indicate that it is possible to identify compounds with broad spectrum activity against both 

M. tuberculosis and parasites.

Continuing the trend previously observed for compounds 17a-t, 18i and 18m, none of the additional 

imidazopyrazin-ones/-es synthesized had appreciable activity against ESKAPE bacteria or fungal 

pathogens (MIC ≥ 32 µg/mL) (Supporting Information, Table S8). Both the nitroimidazopyrazinones 

and nitroimidazopyrazines series were also not cytotoxic against mammalian liver and kidney cell lines 

(CC50 >100 µM, 24d >75 µM due to compound limitations), except for 26f that displayed moderate 

cytotoxicity in both cell lines (CC50 = 26–80 µM) (Supporting Information, Table S8).

To summarize, the SAR of the R2, R3 sites was determined for both the nitroimidazopyrazinone and 

nitroimidazopyrazine series. Several compounds with potent activity against M. tuberculosis, G. lamblia 

and T. b. brucei were identified. Further work confirming the target/mode of action in M. tuberculosis, 

G. lamblia and T. b. brucei could aid in explaining the differences in activity. Additional studies to 

measure the reduction potential may provide insight into the differences in the activity between the 

nitroimidazopyrazinones and nitroimidazopyrazines.
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Table 3. SAR exploring the differences between the R2 and R3 groups for the imidazopyrazinone (core A) versus 

the imidazopyrazine (core B).

Compound Antibacterial

MIC (µg/mL)

Antiparasitic

IC50 (µM) (pIC50 ± SE)e

No. Core R1 R2 R3

Molecular 

weight 

(g/mol) M. 

tuberculosisa 

normoxia

M. 

tuberculosisa 

hypoxia

G. lambliab E. 

histolyticac

T. b 

bruceid

Metronidazole 1 171.2 >32 >32 7.2 (5.1 ± 

0.02)

4.3 (5.4 ± 

0.02)

>40 (<4.4)

Pretomanid 6 359.3 0.25-0.5 1 3.0 (5.5 ± 

0.02)

9.3 (5.0 ± 

0.03)

19 (4.7 ± 

2.4)

24a A H 256.2 >32 >32 10 (5.0 ± 

0.03)

>25 (<4.6) 0.22 (6.7 ± 

0.071)

24b A 342.3 >32 >32 11 (5.0 ± 

0.05)

34 (4.5 ± 

0.1)

0.86 (6.1 ± 

0.085)

24c B

CH2CH2OAc

342.3 >32 >32 1.9 (5.7 ± 

0.05)

>50 (<4.3) 1.5 (5.8 ± 

0.085)

24d A 300.3 >32 >32 38 (4.4 ± 

0.03)

>50 (<4.3) N.D.

24e B

CH2CH2OH

Ph H

300.3 >32 >32 5.2 (5.3 ± 

0.05)

>50 (<4.3) 1.1 (6.0 ± 

0.12)

25a A H 194.2 >32 >32 ~50 (~4.3) >50 (<4.3) 3.6 (5.4 ± 

0.20)

25b A 280.2 >32 >32 ~50 (~4.3) 41% I @ 

50 µM

0.65 (6.2 ± 

0.021)

25c B

CH2CH2OAc

280.2 >32 >32 21 (4.7 ± 

0.06)

42% I @ 

50 µM

>40 (<4.4)

25d A 238.2 >32 >32 >50 (<4.3) >50 (<4.3) 4.6 (5.3 ± 

0.092)

25e B

CH2CH2OH

CH3 H

238.2 >32 >32 80% I @ 

50 µM

>50 (<4.3) 56% I @ 

40 µM
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Compound Antibacterial

MIC (µg/mL)

Antiparasitic

IC50 (µM) (pIC50 ± SE)e

No. Core R1 R2 R3

Molecular 

weight 

(g/mol) M. 

tuberculosisa 

normoxia

M. 

tuberculosisa 

hypoxia

G. lambliab E. 

histolyticac

T. b 

bruceid

25f A 368.3 >32 >32 5.8 (5.2 ± 

0.04)

>50 (<4.3) 0.41 (5.4 ± 

0.057)

25g B

CH2(4-OCF3-

Ph)

368.3 >32 >32 7.4 (5.1 ± 

0.03)

9.5 (5 ± 

0.07)

>40 (<4.4)

25h A 298.3 >32 >32 4.4 (5.4 ± 

0.03)

10 (5.0 ± 

1.0)

0.56 (6.3 ± 

0.028)

25i B

CH2(4-CH3-

Ph)

298.3 N.D. N.D. 5.7 (5.2 ± 

0.03)

30 (4.5 ± 

0.1)

N.D.

25j A CH2(3-OCF3-

Ph)

368.3 >32 >32 2.8 (5.6 ± 

0.01)

16 (4.8 ± 

0.1)

1.1 (5.9 ± 

0.021)

25l A 368.3 >32 >32 3.3 (5.5 ± 

0.01)

9.1 (5 ± 

0.08)

2.1 (5.7 ± 

0.29)

25m B

CH2(2-OCF3-

Ph)

368.3 >32 >32 5.7 (5.2 ± 

0.02)

>50 (<4.3) 1.2 (5.9 ± 

0.13)

26a A H 208.2 >32 >32 ~50 (~4.3) >50 (<4.3) 2.6 (5.6 ± 

0.17)

26b A 382.3 1 4 4.2 (5.4 ± 

0.04)

10 (5 ± 

0.1)

0.24 (5.7 ± 

0.0071)

26c B

CH2(4-OCF3-

Ph)

382.3 >32 >32 8.6 (5.1 ± 

0.04)

17 (4.8 ± 

0.09)

10 (5.0 ± 

0.20)

26d A 312.3 2 4 5.2 (5.3 ± 

0.02)

33 (4.5 ± 

0.04)

0.25 (6.6 ± 

0.0071)

26e B

CH2(4-CH3-

Ph)

312.3 >32 >32 5.8 (5.2 ± 

0.02)

>50 (<4.3) 2.2 (5.6 ± 

0.31)

26f A CH2(3-OCF3-

Ph)

CH3 CH3

382.3 1 16-32 1.7 (5.8 ± 

0.01)

15 (4.8 ± 

0.03)

0.40 (6.4 ± 

0.0071)
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Compound Antibacterial

MIC (µg/mL)

Antiparasitic

IC50 (µM) (pIC50 ± SE)e

No. Core R1 R2 R3

Molecular 

weight 

(g/mol) M. 

tuberculosisa 

normoxia

M. 

tuberculosisa 

hypoxia

G. lambliab E. 

histolyticac

T. b 

bruceid

26g B 382.3 >32 >32 3.9 (5.4 ± 

0.01)

27 (4.6 ± 

0.02)

1.4 (5.9 ± 

0.24)

26h A 382.3 >32 >32 5.3 (5.3 ± 

0.03)

18 (4.7 ± 

0.02)

0.78 (6.1 ± 

0.090)

26i B

CH2(2-OCF3-

Ph)

382.3 >32 >32 >50 (<4.3) >50 (<4.3) 1.9 (5.7 ± 

0.27)

a H37Rv, M.tuberculosis-normoxia primary screen at 32 µg/mL n = 3, M. tuberculosis-hypoxia primary screen at 32 µg/mL n = 1–3, MIC-

normoxia/hypoxia of active compounds n = 3–6. Isoniazid control M. tuberculosis-normoxia MIC = 0.04 µg/mL, M. tuberculosis-hypoxia 

MIC >5 µg/mL; b WB; c HM1:IMSS; d pentamidine control IC50 = 0.002 µM, diminazine aceturate IC50 = 0.062 µM, puromycin IC50 = 0.05 

µM, n = 2; e the percentage inhibition (%I) at the highest concentration tested is reported for compounds that were not sufficiently active to 

determine an IC50.

Microsomal Stability, Plasma Stability and Plasma Protein Binding 

A set of ten compounds was selected for initial assessment of drug-like properties (microsomal stability, 

plasma stability and plasma protein binding (PPB)) based on their potency and structural diversity (Table 

4). It was also envisioned that these studies would provide clarity as to whether there was a clear benefit 

to either the nitroimidazopyrazinone or nitroimidazopyrazine series from the perspective of ADMET 

properties. Nitroimidazopyrazinones were stable in human liver microsomes (HLM) after 2 h of 

incubation, regardless of the structural differences in R1, R2 and R3. However, 18i, 25g and 26c from the 

nitroimidazopyrazine series only showed moderate stability in HLM, independent of differences at R1, 

R2, and R3, with 44-69% of compound remaining after 2 h (Table 4).
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To further understand how the metabolic stability could impact in vivo efficacy studies, metabolic 

stability was evaluated in CD-1 mouse liver microsomes (MLM) because the CD-1 mouse strain is 

intended to be used for future in vivo efficacy studies. As for HLM, the majority of the 

nitroimidazopyrazinones 17c-f, 17i and 25f displayed excellent stabilities toward MLM. However, one 

of the imidazopyrazinone analogs, 26b (R2 = R3 = CH3) showed significant degradation after 2 h, with 

only 3.6% of intact compound remaining (compared to 92% in HLM) (Table 4). Comparison of 25f with 

26b, which differ by the presence of a hydrogen or methyl group at R3 respectively, indicated that the 

methyl group at R3 was responsible for the high intrinsic clearance of 26b in MLM. 

Nitroimidazopyrazines, 18i, 25g and 26c were also not stable in MLM (<0.5–8% remaining), suggesting 

a metabolic liability of this series.

Compound stability in both human and mouse (CD-1) plasma was assessed for compounds 17c-f, 25f-g 

and 26b-c (Table 4). All of the examples had >90% of compound remaining after 2 h at 37 °C, similar 

to pretomanid 6. Therefore, both the nitroimidazopyrazinones and nitroimidazopyrazines series were 

stable in human and mouse plasma, despite the instability of nitroimidazopyrazines observed in liver 

microsomes.

Plasma protein binding affects compound bioavailability and tissue distribution in vivo. Therefore, to 

understand PPB for the nitroimidazopyrazines and nitroimidazopyrazines series, selected potent 

compounds (17c, 17e-f, 25f-g and 26b) were evaluated for PPB using the ultrafiltration method (Table 

4). Most of the tested compounds, except 17e (82% bound) had high PPB at >95%, which might limit 

the concentration of free compounds at the site of infection. However, as many approved and clinical 

drugs, including 6, tend to have high PPB, this parameter is not recommended to be optimized in early 

drug design.42
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Table 4. In vitro physicochemical properties for representative compounds.

Microsomal stability

(% remaining at 2 h)

Plasma stability

(% remaining at 2 h)

Compound Core R1 R2 R3

Human Mouse 

(CD-1)

Human Mouse (CD-

1)

Plasma 

protein 

binding 

(%)

Pretomanid 6 97 ± 5.0 92 ± 2.7 96 ± 6.9 96 ± 1.9 97 ± 1.1

17c A CH2(4-OCF3-Ph) >99 >99 >99 >99 98 ± 0.4

17d A CH2(4-CH3-Ph) 97 ± 1.1 96 ± 6.0 >99 >99 N.D

17e A CH2(4-F-Ph) 99 >99 98 ± 1.4 >99 82 ± 0.3

17f A CH2(3-OCF3-Ph) >99 >99 >99 97 ± 2.2 99 ± 0.2

17i A CH2(2-OCF3-Ph) >99 >99 N.D N.D N.D

18i B CH2(2-OCF3-Ph)

H H

51 ± 18 <0.5 N.D N.D N.D

25f A CH2(4-OCF3-Ph) >99 >99 92 ± 4.1 99 ± 4.8 98 ± 0.4

25g B CH2(4-OCF3-Ph)
CH3 H

69 ± 4.3 7.9 ± 4.0 94 ± 4.7 >99 >99

26b A CH2(4-OCF3-Ph) 92 ± 1.1 3.6 ± 0.1 97 ± 1.4 >99 99 ± 0.1

26c B CH2(4-OCF3-Ph)
CH3 CH3

44 ± 0.98 <0.5 >99 >99 N.D

Values are presented as mean of three replicates ± SD. N.D represents not determined. Microsome stability verapamil control = 2% (MLM), 

9% (HLM) remaining at 30 min; plasma stability eucatropine control = 28% (mouse), 21% (human) remaining at 2 h; plasma protein 

binding sulfamethoxazole control = 68% bound.

Caco-2 Intestinal Epithelium Permeability

An in vitro Caco-2 monolayer bidirectional assay was used to evaluate intestinal epithelium permeability 

and to predict the oral absorption of the nitroimidazopyrazinone series.43 Three derivatives (17c, 17f and 

26b) were selected based on potency against M. tuberculosis, G. lamblia and T. b. brucei and to permit 

direct comparison of R2 = R3 = H (17c) versus R2 = R3 = CH3 (26b). Pleasingly, compounds 17c, 17f and 

26b were highly permeable (Table 5). The apparent permeability coefficient (Papp) apical to basal (A to 

B) had values of >20 × 10-6 cm/s, similar to pretomanid 6 and propranolol, with the latter used as a 

positive control for high permeability. No metabolism of the compounds by Caco-2 cells was observed. 

This was evident from the high recovery of tested nitroimidazopyrazinones obtained in both directions, 
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similar to the control propranolol (A to B measured). Nitroimidazopyrazinones 17c, 17f and 26b and 6 

also showed a low efflux ratio of <2 (cf. digoxin efflux ratio >360 as it is a substrate for P-gp). Therefore, 

the tested bicyclic nitroimidazoles do not appear to be substrates of efflux transporters. These results 

suggest that 17c, 17f and 26b have desirable therapeutic properties and may display good oral absorption 

properties in vivo.

Table 5. Caco-2 permeability of selected analogs.

Papp (10-6 cm/s) Mean recovery (%)Compound Core R1 R2 R3

A to B B to A A to B A to B

Efflux ratio

Pretomanid 6* 29 22 81 101 0.74

Fenoterol 0.27 N.D 92 N.D N.D

Propranolol 21 N.D 70 N.D N.D

Digoxin <0.020 8.4 <72 88 >360

17c A CH2(4-OCF3-Ph) H H 25 22 83 97 0.88

17f A CH2(3-OCF3-Ph) H H 24 24 88 99 1.0

26b A CH2(4-OCF3-Ph) CH3 CH3 21 20 83 97 0.95

N.D represents not determined. * Comparable results with the literature.22

Kinetic Solubility

Compound solubility impacts in vivo absorption, efficacy and dosing and is thus an important parameter 

to optimize in drug development. For example, the recently approved TB drug, delamanid has limited 

solubility which requires twice daily dosing,44 and new bicyclic analogs with improved solubility would 

be of great interest. According to the generic criteria for hits and leads in infectious diseases identified 

by Japanese Global Health Innovative Technology (GHIT) Fund and its key partners, a lead should have 

acceptable physicochemical properties, with solubility at least >10 μM in phosphate-buffered saline pH 

7.4 (PBS).45
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The kinetic solubility of 48 compounds from the nitroimidazopyrazin-one/e libraries in water and PBS 

buffer (pH 7.4) was determined using LC-UV (Figure 4, for full data see Supporting Information, Table 

S9). The solubility of the derivatives varied over a wide range reflective of the different properties that 

the R1 side chain can impart. As anticipated, polar groups at R1 such as morpholine (17r: CH2CO-

morpholine, 17q: CH2CH2-morpholine), amide (17s: CH2CONH2) and alcohol groups (17p: 

CH2CH2OH) had >30-fold (∆LogS ~ 1.6 units) better solubility than benzyl derivatives (17b-j). The 

nitroimidazopyrazinones had equivalent or improved solubility relative to the nitroimidazopyrazine 

series and this is also reflected in their lower logP values. Encouragingly, when the solubility versus 

activity was compared, a number of compounds with antitrypanosomal activity (T. b. brucei IC50 ≤10 

µM) had good solubility at >100 μM (equivalent to logS >-4), including two potential hits 24b and 25b 

with IC50 <1 µM. The most potent compound 24a achieved moderate aqueous solubility (27 µM in water; 

17 µM in PBS), whereas 26b and 26d with comparable activity were poorly soluble (<10 µM, or logS 

<-5 in water and PBS) (Figure 4). These results demonstrate the potential to achieve desirable solubility 

and activity profile by modifying the R1 group of the bicyclic nitroimidazoles.

However, compounds with potent activity against M. tuberculosis, G. lamblia and E. histolytica generally 

had poor solubility. Most of the potent compounds against M. tuberculosis showed poor solubility with 

<10 μM in both water and PBS, which might require complicated formulations for in vivo efficacy. This 

indicates the importance of lipophilicity at the R1 side chain, which is potentially required for penetration 

of these molecules through the mycobacterial cell walls. Although changing R1 to CH2-pyridinyl 

decreased activity against M. tuberculosis, this derivative (17k) had significantly improved water 

solubility (176 µM in water; 184 µM in PBS) and decreased lipophilicity (∆LogP -0.94 units). Exploring 

other heterocyclic analogs may provide the desired balance of potency and solubility, which has been a 

successful strategy in the literature to identify analogs of pretomanid 6 with improved solubility.46,47
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Figure 4. Comparison of activity vs aqueous solubility data. Several compounds e.g. 25b active against T. b. 

brucei (in blue) had good solubility (>100 µM or logS > -4). Most of the potent compounds, e.g. 17h, against the 

other organisms displayed poor solubility (logS ≤ -5). Dashed lines represent the minimum and maximum range 

of solubility determined experimentally.
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Conclusion

In this study pretomanid 6 was shown to have potent activity against enteric pathogens including G. 

lamblia, E. histolytica and C. difficile. These results expand the current understanding of the spectrum of 

action of 6 from mycobacterium and Leishmania to include anaerobic protozoan parasites and an 

anaerobic Gram-positive bacterium. The in vitro activity of 6 against G. lamblia and E. histolytica at 

equivalent levels to metronidazole 1, suggests that this class of compounds and other subclasses of 

bicyclic nitroimidazoles could be a beneficial avenue to explore for the development of new 

nitroimidazole based therapeutics against these pathogens.

The activity of 6 against enteric pathogens inspired the synthesis and biological evaluation of two new 

bicyclic scaffolds; nitroimidazopyrazin-one/-es derived from the monocyclic 4(5)-nitroimidazole 

carboxamide framework previously reported. A modular synthetic approach enabled the exploration of 

bicyclic imidazopyrazinone derivatives with different substitutions at R1, R2 and R3, along with the 

isomeric O-alkylated nitroimidazopyrazine core scaffold. Through these studies, compounds with potent 

activity against M. tuberculosis, G. lamblia and T. b. brucei were identified. Several compounds also 

displayed moderate activity against E. histolytica. To our knowledge, this is the first example of a 

nitroimidazopyrazinone heterocyclic core with potent antiparasitic activity against M. tuberculosis under 

both normoxic and hypoxic growth conditions as well as promising antiparasitic activity against G. 

lamblia and T. b. brucei. The bicyclic core was essential for antitubercular activity.

This study highlights the potential to prepare new subclasses of bicyclic nitroimidazoles with varied ring 

systems to gain different selectivity profiles toward M. tuberculosis and a range of parasitic organisms. 

All of the compounds with M. tuberculosis activity also displayed activity towards at least some of the 

parasites tested. However, we showed that the activity profile of the series could be tuned towards 
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parasites away from M. tuberculosis, which may be relevant for treating parasitic diseases without 

inducing resistance in M. tuberculosis in co-exposed patients. For example, nitroimidazopyrazinones and 

nitroimidazopyrazines, particularly 24c, 24e (R2 = Ph) and 25h, 25j, 25l-m (R2 = CH3), were active 

against G. lamblia (IC50 = 1.9–5.7 µM, respectively) and T. b. brucei (IC50 = 0.56–2.1 µM, respectively) 

but not M. tuberculosis (MIC >32 µg/mL).

In general, these new subclasses displayed desirable therapeutic properties. Low cytotoxicity against 

mammalian cell lines was observed generally (CC50 >100 µM) for both series. In addition, many of the 

potent derivatives were stable in human and mouse liver microsomes, although the imidazopyrazine 

series was metabolized, particularly in MLM, and when R2 and R3 were methyl substituents. Selected 

derivatives also gave similar results to 6 in plasma stability, plasma protein binding and Caco-2 intestinal 

permeability assays. Like other early stage anti-tubercular leads including bicyclic nitroimidazoles, 

solubility was identified as an important parameter for future optimization. While a number of active 

compounds against T. b. brucei had moderate solubility, the most potent anti-tubercular compounds had 

poor aqueous kinetic solubility (<10 µM). Optimization of the R1, R2 and R3 sites, particularly the R1 

site, to arrive at more potent compounds, while maintaining desirable drug-like properties and improving 

the solubility will be explored in future studies.

This study lays the foundation for future work focused on determining and optimizing the efficacy of 

selected derivatives in in vivo models of M. tuberculosis, G. lamblia and T. b. brucei and understanding 

their mode of action in various microorganisms. These studies are expected to provide further insight 

into nitroimidazole activation and guide the development of bicyclic nitroimidazoles with therapeutic 

potential against both M. tuberculosis and a wide range of parasitic organisms.
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Experimental

General Information. Reagents and anhydrous solvents were used as received. Reactions requiring 

anhydrous conditions were performed under an inert atmosphere of nitrogen. Reactions were monitored 

by TLC or LCMS. Analytical TLC was performed on Merck TLC aluminum sheets pre-coated with 

Silica Gel 60 F-254 and compounds were visualized using UV254 lamp and potassium permanganate 

stain. Melting points were determined using a Gallenkamp melting point apparatus and are corrected to 

a standard curve of the measured and literature melting points of vanillin, acetyl salicylic acid, 3-

phenoxybenzoic acid and caffeine standards. Analytical LCMS was performed on a Shimadzu LCMS 

using 0.05% formic acid in water as solvent A and 0.05% formic acid in acetonitrile as solvent B. 

Standard conditions unless otherwise specified: Column Zorbax Eclipse XDB-Phenyl, 3.0×100mm, 3.5 

μ. Alternative column: Waters Atlantis T3, 3.0 × 100mm, 3 μ. Detection: PDA UV, ELSD and 

electrospray MS. Compounds were purified by MPLC (Biotage Isolera or Grace Reveleris X2 

chromatography systems) or by HPLC (Agilent Preparative HPLC 1260 Infinity Series). Commercially 

available cartridges were used for MPLC chromatography (Biotage SNAP cartridge HP-Silica 10 g, 25 

g or 50 g, Reveleris 4 g or 12 g Silica (40 µm) cartridge or Reveleris C18 Reversed-Phase 12 g cartridge). 

Column for HPLC: Agilent XDB Phenyl 5 µm, 30 x 100 mm. All products tested for biological activity 

were obtained in >95% purity as determined by HPLC using UV at 254 nm, ESIMS and ELSD detection. 

NMR data were collected and calibrated in DMSO-d6 or CDCl3 with 0.05% TMS at 298K on a Varian 

Unity 400 MHz or Bruker Avance-600 MHz spectrometer. Where appropriate, 1H-coupling constants 

were examined using resolution enhancement with MestReNova software. High resolution mass 

spectrometry (HRMS) was performed on a Bruker MicroTOF mass spectrometer using (+)-ESI 

calibrated to HCOONa. For compounds purified by reverse phase chromatography, the exact 

concentration of the compounds for assay was determined by the quantitative NMR integration 

‘PULCON’ experiment.48 These settings were used for all PULCON experiments: relaxation delay of 30 
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s, 8 scans, 2 dummy scans, 90° pulse and temperature at 298 K. The mass calculated from PULCON 

experiments was used to calculate the reaction percentage yields.

General Procedure A: Alkylation of imidazole and imidazopyrazinones

To a stirred solution of imidazole/imidazopyrazinone (1 eq) in anh. DMF (15–30 vol) was added K2CO3 

or Cs2CO3 (3 eq) followed by alkyl or benzyl halide (1.2–1.5 eq). The reaction was stirred at rt or heated 

in a microwave reactor at 80–180 °C for 15 min and monitored by LCMS. If necessary, an additional 

portion of alkylating agent (0.5–1.5 eq) was added and the reaction was heated at µW 120–180 °C for a 

further 15 min to consume the imidazole starting material. Work-up procedure A: the reaction was poured 

into H2O and extracted with EtOAc. The combined organic layers were washed with brine, dried over 

MgSO4 and filtered. Volatiles were removed in vacuo to give the crude product. Work-up procedure B: 

The reaction was poured into water, the precipitate collected by filtration, washed with water and dried 

in vacuo.

General Procedure B: Alkylation of imidazopyrazinones

To a stirred suspension of imidazopyrazinone (1 eq) in toluene (20 vol) was added Ag2CO3 (1.2 eq) 

followed by benzyl halide (2 eq). The reaction was heated at 80 °C overnight and monitored by LCMS. 

General aqueous work up: the reaction was poured into H2O and extracted with EtOAc. The combined 

organic layers were washed with brine, dried over MgSO4 and filtered. Volatiles were removed in vacuo 

to give the crude product.

General Procedure C: Ring closure to synthesize imidazopyrazinones

To a stirred solution of 4-nitroimidazole (1 eq) in 1,4-dioxane (10 vol) was added 2 M aq. HCl (10 vol). 

The reaction was heated at 120 °C for 30 min in the microwave. Work-up procedure A: The crystalline 

solid was collected by vacuum filtration. The precipitate was washed with water and dried in vacuo to 
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give a solid. Work-up procedure B: After heating the reaction, the volatiles were evaporated in vacuo to 

yield a crude material that was purified by recrystallization or chromatography.

General Procedure D: Deprotection of acetate protecting group

Anh. K2CO3 (1.5 eq) was added to a stirred suspension of ethyl acetate imidazopyrazinone (1 eq) in 

MeOH (20 vol). After 1 hr, volatiles were removed under a stream of N2. The solid was suspended with 

H2O, filtered, washed with water and dried under vacuum. Work-up procedure B: the reaction was 

acidified with a 5% solution of TFA in MeOH. The suspension was then concentrated onto C18 silica 

gel and purified by MPLC.

General Procedure E: Two step, one pot synthesis of imidazopyrazinones 

Alkylating agent (1.2–1.5 eq) was added slowly to a stirred suspension of 13a (1 eq), anh. K2CO3 (3 eq) 

in anh. DMF (15 vol). The reaction was stirred at rt until complete (10 min–5 h). 2M aq. HCl (15 vol), 

was then added slowly to control effervescence (CO2). The reaction was then stirred at rt (overnight to 4 

days), or for 22a heated with microwave irradiation until the cyclization was complete. The solid 

precipitate was collected by vacuum filtration, washed with water and MeOH and then dried in vacuo.

N-Benzyl-5-nitro-1H-imidazole-2-carboxamide; 16b

Prepared according to Jarrad et al.28 Amine: benzylamine (300 μL, 2.74 mmol). The crude material was 

purified over silica gel by MPLC (Biotage 20–100% EtOAc in pet. spirits gradient) to yield a colorless 

solid (399 mg, 71%). LCMS: Rt = 3.13 min, 99 A% @ 254 nm, [M - H]- = 245.0. 1H NMR (600 MHz, 

DMSO-d6) δ 14.31 (s, 1H), 9.45 (t, J = 6.4 Hz, 1H), 8.46 (s, 1H), 7.31 (d, J = 4.4 Hz, 4H), 7.27 – 7.20 

(m, 1H), 4.43 (d, J = 6.4 Hz, 2H). 13C NMR (150 MHz, DMSO-d6) δ 157.2, 146.8, 139.7, 139.1, 128.3, 

127.4, 126.9, 121.6, 42.3. HRMS (ESI): m/z calcd for C11H10N4NaO3 [M + Na]+, 269.0645; found, 

269.0639. 
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N-(4-Methylbenzyl)-5-nitro-1H-imidazole-2-carboxamide; 16d

Prepared according to Jarrad et al.28 Amine: 4-methylbenzylamine (155 μL, 1.37 mmol). The crude 

material was purified over silica gel by MPLC (Grace Reveleris X2, 20–100% EtOAc in pet. spirits 

gradient) to obtain a yellow solid (201 mg, 68%). LCMS: Rt = 3.27 min, 99 A% @ 254 nm, [M - H]- = 

259.0. 1H NMR (600 MHz, DMSO-d6) δ 14.30 (s, 1H), 9.37 (t, J = 6.4 Hz, 1H), 8.43 (s, 1H), 7.20 (d, J 

= 8.2 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 4.37 (d, J = 6.4 Hz, 2H), 2.26 (s, 3H). 13C NMR (150 MHz, 

DMSO-d6) δ 157.2, 146.8, 140.0, 136.1, 135.9, 128.8, 127.4, 121.8, 42.0, 20.7. HRMS (ESI): m/z calcd 

for C12H12N4NaO3 [M + Na]+, 283.0802; found, 283.0794. 

2-Nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17a

To a stirred suspension of 19a (551 mg, 2.02 mmol) in H2O (11 mL) was added 5% aq. HCl (1.44 mL, 

1 eq). The reaction was refluxed for 4.5 h. The solvent was removed in vacuo. The crude product was 

purified by recrystallization (slurry equilibration with hot MeOH) to give fine off-white needles (241 

mg, 66%). Mp = 350 °C (decomposed). LCMS: Rt = 1.49 min, 99 A% @ 254 nm, [M + H]+ = 180.8. 1H 

NMR (600 MHz, DMSO-d6) δ 11.58 (s, 1H), 8.81 (s, 1H), 7.50 (d, J = 5.6 Hz, 1H), 7.07 (d, J = 5.7 Hz, 

1H). 13C NMR (150 MHz, DMSO-d6) δ 153.2, 147.6, 135.5, 119.8, 116.6, 107.1. The position of the 

nitro group was confirmed by HMBC and X-ray crystallography. X-ray diffraction data were collected 

on Oxford Diffraction Gemini Ultra dual source (Mo and Cu) CCD Diffractometer with Cu radiation (λ 

= 1.54184 Å), T = 190(2) K. Additional crystallographic data and HMBC data are available in the 

Supporting Information, Figure S1 and Tables S1-S3. HRMS (ESI): m/z calcd for C12H8N8NaO6 [2M + 

Na]+, 383.0459; found, 383.0454.

7-Benzyl-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17b

Compound 19b (150 mg, 0.414 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified by recrystallization (hot slurry from DCM/MeOH) to yield a tan solid 
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(88 mg, 78%). Mp = 298–299 °C (decomposed). LCMS: Rt = 3.17 min, 99 A% @ 254 nm, [M + H]+ = 

271.0. 1H NMR (600 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.60 (d, J = 5.9 Hz, 1H), 7.42 (d, J = 5.9 Hz, 1H), 

7.37 – 7.34 (m, 4H), 7.32 – 7.24 (m, 1H), 5.13 (s, 2H). 13C NMR (150 MHz, DMSO-d6) δ 152.8, 148.0, 

136.5, 135.2, 128.7, 127.8, 127.7, 123.6, 116.7, 107.4, 50.2. HRMS (ESI): m/z calcd for C13H10N4NaO3 

[M + Na]+, 293.0645; found, 293.0640.

2-Nitro-7-(4-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 17c

 Compound 19c (300 mg, 0.672 mmol) was reacted according to general procedure C, work-up procedure 

A, to yield a lemon yellow crystalline solid (207 mg, 87%). Mp = 264–266 °C (decomposed). LCMS: Rt 

= 3.47 min, 99 A% @ 254 nm, [M + H]+ = 355.0. 1H NMR (600 MHz, DMSO-d6) δ 8.82 (s, 1H), 7.62 

(d, J = 5.9 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.46 (d, J = 5.9 Hz, 1H), 7.39 – 7.33 (m, 2H), 5.16 (s, 2H).13C 

NMR (150 MHz, DMSO-d6) δ 152.8, 148.0, 147.7, 136.0, 135.1, 129.7, 123.5, 121.2, 120.0 (q, J = 257.6 

Hz), 116.6, 107.5, 49.6. HRMS (ESI): m/z calcd for C14H9F3N4NaO4 [M + Na]+, 377.0468; found, 

377.0467.

7-(4-Methylbenzyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17d

Compound 19d (100 mg, 0.266 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified by recrystallization (slurry equilibration with hot DCM/MeOH) to 

yield a tan solid (53 mg, 70%). Mp = 311–312 °C (decomposed). LCMS: Rt = 3.30 min, 99 A% @ 254 

nm, [M + H]+ = 285.1. 1H NMR (600 MHz, DMSO-d6) δ 8.80 (s, 1H), 7.58 (d, J = 5.9 Hz, 1H), 7.39 (d, 

J = 5.9 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.18 – 7.13 (m, 2H), 5.07 (s, 2H), 2.27 (s, 3H). 13C NMR (151 

MHz, DMSO-d6) δ 152.7, 148.0, 137.1, 135.1, 133.5, 129.2, 127.8, 123.5, 116.6, 107.4, 49.9, 20.7. 

HRMS (ESI): m/z calcd for C14H13N4O3 [M + H]+, 285.0982; found, 285.0973.

7-(4-Fluorobenzyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17e
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Compound 19e (384 mg, 1.01 mmol) was reacted according to the general procedure C, work-up 

procedure A, to yield a yellow crystalline solid (249 mg, 86%). Mp = 297 °C (decomposed). LCMS: Rt 

= 3.23 min, 98 A% @ 254 nm, [M + H]+ = 289.0. 1H NMR (600 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.60 

(d, J = 5.9 Hz, 1H), 7.44 (d, J = 5.9 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.23 – 7.15 (m, 2H), 5.11 (s, 2H). 13C 

NMR (150 MHz, DMSO-d6) δ 161.7 (d, J = 243.9 Hz), 152.8, 148.0, 135.1, 132.7, 130.0 (d, J = 8.6 Hz), 

123.4, 116.6, 115.4 (d, J = 20.1 Hz), 107.4, 49.5. HRMS (ESI): m/z calcd for C13H9FN4NaO3 [M + Na]+, 

311.0551; found, 311.0551.

2-Nitro-7-(3-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 17f

Compound 19f (100 mg, 0.224 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified by recrystallization (DCM/EtOH) with hot filtration to obtain a 

colorless pearlescent solid (33 mg, 42%). Mp = 230–231 °C (decomposed). LCMS: Rt = 3.45 min, 99 

A% @ 254 nm, [M + H]+ = 355.0. 1H NMR (600 MHz, DMSO-d6) δ 8.82 (s, 1H), 7.61 (d, J = 5.8 Hz, 

1H), 7.49 (t, J = 7.9 Hz, 1H), 7.45 (d, J = 5.9 Hz, 1H), 7.41 – 7.38 (m, 1H), 7.37 (ddd, J = 7.5, 1.6, 0.7 

Hz, 1H), 7.33 – 7.28 (m, 1H), 5.17 (s, 2H). 13C NMR (150 MHz, DMSO-d6) δ 152.9, 148.5, 148.0, 139.3, 

135.2, 130.7, 126.7, 123.5, 120.3, 120.2, 120.1 (q, J = 257.2 Hz), 116.7, 107.6, 49.8. HRMS (ESI): m/z 

calcd for C14H9F3N4NaO4 [M + Na]+, 377.0468; found, 377.0471.

7-(3-Methylbenzyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17g

Compound 17a (70 mg, 0.389 mmol) was reacted according to general procedure B. The crude material 

contained imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a ratio of 2:1 as detected 

by LC-MS (UV 254 nm). The crude was partially purified over silica gel by MPLC (Biotage Isolera, 0-

6% DCM/MeOH), then purified over C18-reversed phase silica (Grace Reveleris X2, A: H2O + 0.1% 

TFA, B: ACN + 0.1% TFA, 0–100% B) to yield imidazopyrazinone 17g as white powder (11 mg, 7%) 

and imidazopyrazine 18g as white powder (9 mg, 7%). Major isomer imidazopyrazinone 17g: LCMS: 
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Rt = 3.25 min, 99 A% @ 254 nm, [M+H]+  = 285.1. 1H NMR (600 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.59 

(d, J = 5.9 Hz, 1H), 7.40 (d, J = 5.9 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.18 – 7.09 (m, 3H), 5.09 (s, 2H), 

2.28 (s 3H). 13C NMR (150 MHz, DMSO-d6) δ 152.7, 148.0, 137.9, 136.4, 135.1, 128.5, 128.4, 128.2, 

124.8, 123.5, 116.6, 107.3, 50.1, 20.9. HRMS (ESI): m/z calc for C14H12N4O3Na [M+Na]+: 307.0802, 

found 307.0800. Characterization data of 18g is listed below following Compounds 17a-t.

2-Nitro-7-(3-(trifluoromethyl)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 17h

Compound 17a (70 mg, 0.389 mmol) was reacted with Cs2CO3 and 3-(trifluoromethyl)benzyl bromide 

(1.2 eq) according to general procedure A at µW 100 °C (15 min), work-up B. The crude material 

containing imidazopyrazinone (major) and imidazopyrazine (minor) isomers were detected in a ratio of 

10.1:1 by LC-MS (UV 254 nm). The crude material was purified over silica gel by MPLC (Biotage 

Isolera, 0-5% DCM/MeOH) to give final products imidazopyrazinone 17h as white powder (11 mg, 7%) 

and imidazopyrazine 18h as white powder (9 mg, 7%). Major isomer imidazopyrazinone 17h (cream 

powder, 72 mg, 55%): LCMS: Rt = 2.95 min, 99 A% @ 254 nm, [M+H]+  = 339.1; 1H NMR (600 MHz, 

DMSO-d6) δ 8.82 (s, 1H), 7.77 (d, J = 1.7 Hz, 1H), 7.67 (dd, J = 12.3, 7.4 Hz, 2H), 7.63 – 7.58 (m, 2H), 

7.48 (d, J = 5.9 Hz, 1H), 5.22 (s, 2H); 13C NMR (150 MHz, DMSO-d6) δ 152.9, 148.0, 137.9, 135.2, 

131.9, 129.7, 129.3 (q, J = 31.8 Hz), 124.5, 124.5, 124.1 (q, J = 272.2 Hz), 123.5, 116.7, 107.6, 

49.9.HRMS (ESI): m/z calc for C14H9F3N4O3Na [M+Na]+: 361.0519, found 361.0517. Characterization 

data of 18h is listed below following Compounds 17a-t.

2-Nitro-7-(2-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 17i 

Compound 17a (70 mg, 0.389 mmol) was reacted according to general procedure B. The crude material 

contained imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a ratio of 1.9:1 as detected 

by LC-MS (UV 254 nm). The crude material was purified over C18-reversed phase silica (Grace 

Reveleris X2, A: H2O + 0.1% TFA, B: ACN + 0.1% TFA, 30–80% B) to give final product: Major 
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isomer imidazopyrazinone 17i (cream powder, 20 mg, 5%): LCMS: Rt = 2.95 min, 98 A% @ 254 nm, 

[M+H]+  = 355.1; 1H NMR (600 MHz, DMSO-d6) δ 8.84 (s, 1H), 7.63 (d, J = 5.9 Hz, 1H), 7.47 (ddd, J 

= 8.2, 7.1, 1.8 Hz, 1H), 7.42 (dt, J = 8.2, 1.6 Hz, 1H), 7.39 – 7.27 (m, 3H), 5.21 (s, 2H); 13C NMR (150 

MHz, DMSO-d6) δ 152.7, 148.0, 146.2, 135.1, 129.7, 129.5, 128.5, 127.6, 123.6, 120.5, 120.2 (q, J = 

257.1 Hz), 116.7, 107.5, 45.7. HRMS (ESI): m/z calc for C14H9F3N4O4Na [M+Na]+: 377.0468, found 

377.0469. Mixed fractions were combined and purified over silica gel by MPLC (Biotage Isolera, 0-6% 

DCM/MeOH) to yield minor isomer imidazopyrazine 18i (white powder, 11 mg, 3%). Characterization 

data of 18i is listed below following Compounds 17a-t.

7-(2,4-Difluorobenzyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17j

Compound 17a (50 mg, 0.278 mmol) was reacted with Cs2CO3 and 2,4-difluorobenzyl bromide (1.2 eq) 

according to general procedure A at rt for 1 h, with work-up procedure B. The crude product was purified 

by recrystallization (slurry equilibration with hot DCM/EtOH) to yield the final product 

imidazopyrazinone 17j as a white powder (64 mg, 75%). LCMS: Rt  = 2.79 min, 99 A% @ 254 nm, 

[M+H]+  = 307.1; 1H NMR (600 MHz, DMSO-d6) δ 8.82 (s, 1H), 7.61 (d, J = 5.9 Hz, 1H), 7.43 (td, J = 

8.7, 6.5 Hz, 1H), 7.37 (d, J = 5.9 Hz, 1H), 7.30 (ddd, 10.7, 9.3, 2.6 Hz, 1H), 7.10 – 7.06 (m, 1H), 5.14 

(s, 2H); 13C NMR (150 MHz, DMSO-d6) δ 161.9 (dd, J = 246.9, 12.2 Hz), 160.3 (dd, J = 247.9, 12.2 

Hz), 152.7, 148.0, 135.0, 131.5 (dd, J = 10.3, 5.6 Hz), 123.6, 119.5 (dd, J = 15.2, 3.9 Hz), 116.7, 111.6 

(dd, J = 21.4, 3.2 Hz), 107.4, 104.0 (t, J = 25.7 Hz), 44.6 (d, J = 3.2 Hz). HRMS (ESI): m/z calc for 

C13H8F2N4O3Na [M+Na]+: 329.0457, found 329.0449.

2-Nitro-7-(pyridin-2-ylmethyl)imidazo[1,2-a]pyrazin-8(7H)-one.1TFA; 17k

Compound 19k (150 mg, 0.413 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified over C18 silica gel by MPLC (Grace Reveleris X2, A: H2O + 0.1% 

TFA, B: ACN + 0.1% TFA, 5–30% B) to yield a colorless powder (88 mg, 56%). LCMS: Rt = 2.61 min, 
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99 A% @ 254 nm, [M + H]+ = 272.0. 1H NMR (600 MHz, DMSO-d6) δ 8.85 (s, 1H), 8.53 (dt, J = 4.8, 

1.4, 1H), 7.86 (td, J = 7.7, 1.8 Hz, 1H), 7.63 (d, J = 5.9 Hz, 1H), 7.44 (dd, J = 10.1, 6.9 Hz, 2H), 7.40 – 

7.34 (m, 1H), 5.26 (s, 2H). 13C NMR (150 MHz, DMSO-d6) δ 155.0, 152.8, 148.6, 148.0, 137.8, 135.1, 

124.6, 123.1, 122.1, 116.6, 107.1, 51.8. HRMS (ESI): m/z calcd for C12H9N5O3 [M + H]+, 272.0778; 

found, 272.0782. 

7-(1-(4-Fluorophenyl)ethyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17l

Compound 19l (100 mg, 0.254 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified by recrystallization (DCM/EtOH) with hot filtration to yield a 

colorless pearlescent solid (34 mg, 45%). Mp = 275–277 °C (decomposed). LCMS: Rt = 3.31 min, 99 

A% @ 254 nm, [M + H]+ = 303.0. 1H NMR (600 MHz, DMSO-d6) δ 8.77 (s, 1H), 7.57 (d, J = 6.1 Hz, 

1H), 7.47 – 7.41 (m, 2H), 7.24 – 7.19 (m, 3H), 6.15 (q, J = 7.1 Hz, 1H), 1.71 (d, J = 7.2 Hz, 3H). 13C 

NMR (150 MHz, DMSO-d6) δ 161.6 (d, J = 244.4 Hz), 152.6, 148.0, 136.2 (d, J = 2.90 Hz), 134.9, 129.3 

(d, J = 8.49 Hz), 119.8, 116.4, 115.5 (d, J = 21.3 Hz), 107.8, 51.6, 18.4. HRMS (ESI): m/z calcd for 

C14H11FN4NaO3 [M + Na]+, 325.0707; found, 325.0718.

2-Nitro-7-(4-(trifluoromethoxy)phenethyl)imidazo[1,2-a]pyrazin-8(7H)-one; 17m 

Imidazopyrazinone 17a (75 mg, 0.42 mmol), K2CO3 and 1-(2-bromoethyl)-4-(trifluoromethoxy)benzene 

(1.2 eq) were reacted according to general procedure A (µW 80 °C, 30 min). The crude material contained 

imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a 10:1 ratio (1H NMR integration). 

The major imidazopyrazinone isomer 17m was obtained by purification of the crude residue over C18 

silica gel (Grace Reveleris X2, A: H2O + 0.1% TFA, B: ACN + 0.1% TFA, 40–100% B) to yield a cream 

solid (33 mg, 22%). Purification of mixed fractions over silica gel by MPLC (Grace Reveleris X2, 0–7% 

MeOH in DCM gradient) yielded an additional portion of imidazopyrazinone 17m as a cream solid (34 

mg, 22%) and the imidazopyrazine isomer 18m as a colorless solid (6 mg, 4%). Major isomer 
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imidazopyrazinone 17m: LCMS: Rt = 3.51 min, 99 A% @ 254 nm, 95 A% @ 200 nm, [M + H]+ = 

369.0. 1H NMR (600 MHz, DMSO-d6) δ 8.79 (s, 1H), 7.54 (d, J = 5.8 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.29 

(d, J = 8.0 Hz, 2H), 7.27 (d, J = 5.9 Hz, 1H), 4.13 (t, J = 7.5 Hz, 2H), 3.00 (t, J = 7.5 Hz, 2H). 13C NMR 

(150 MHz, DMSO-d6) δ 152.6, 148.0, 147.0, 137.4, 135.0, 130.7, 123.6, 121.1, 120.1 (q, J = 257.1 Hz), 

116.5, 106.8, 48.6, 33.3. HRMS (ESI): m/z calcd for C15H12F3N4O4 [M + H]+, 369.0805; found, 

369.0814. Characterization data of 18m is listed below following Compounds 17a-t.

7-(4-Methylphenethyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17n

Compound 19n (100 mg, 0.273 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified by recrystallization (DCM/acetone) with hot filtration to yield a 

pearlescent tan solid (45 mg, 59%). Mp = 262–264 °C. LCMS: Rt = 3.38 min, 99 A% @ 254 nm, [M + 

H]+ = 299.1. 1H NMR (600 MHz, DMSO-d6) δ 8.78 (s, 1H), 7.52 (d, J = 5.8 Hz, 1H), 7.26 (d, J = 5.9 

Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 4.10 (dd, J = 8.4, 6.7 Hz, 2H), 2.92 (t, J = 7.5 

Hz, 2H), 2.25 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 152.6, 148.0, 135.5, 135.0, 134.7, 129.1, 128.7, 

123.7, 116.4, 106.7, 49.0, 33.7, 20.7. HRMS (ESI): m/z calcd for C15H15N4O3 [M + H]+, 299.1139; found, 

299.1132.

2-(2-Nitro-8-oxoimidazo[1,2-a]pyrazin-7(8H)-yl)ethyl acetate; 17o

Imidazopyrazinone 17a (70 mg, 0.39 mmol), K2CO3 and 2-bromoethylacetate (1.5 eq) were reacted 

according to general procedure A (µW 80 °C, 30 min). Imidazopyrazinone isomer was detected as the 

major regioisomer, with a 10: 1 imidazopyrazinone:imidazopyrazine ratio, by LCMS (UV 254 nm). The 

reaction was poured into H2O (20 mL) and the precipitate filtered to yield a cream solid (72 mg, 69%). 

LCMS: Rt = 2.18 min, 99 A% @ 254 nm, [M + H]+ = 267.0. 1H NMR (600 MHz, DMSO-d6) δ 8.81 (s, 

1H), 7.58 (d, J = 5.9 Hz, 1H), 7.35 (d, J = 5.9 Hz, 1H), 4.33 – 4.27 (m, 2H), 4.19 – 4.14 (m, 2H), 1.97 
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(s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.2, 152.8, 147.9, 134.9, 124.0, 116.5, 106.8, 61.3, 46.7, 

20.6. HRMS (ESI): m/z calcd for C10H10N4NaO5 [M + Na]+, 289.0543; found, 289.0545.

7-(2-Hydroxyethyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17p

Compound 17o (45 mg, 0.17 mmol) was reacted according to general procedure D. The product was 

purified over C18 silica gel by MPLC (Grace Reveleris X2, A: H2O + 0.1% TFA, B: ACN + 0.1% TFA, 

5–22% B) to yield a pale lemon powder (18 mg, 45%). LCMS: Rt = 1.79 min, 99 A% @ 254 nm, [M + 

H]+ = 225.0. 1H NMR (600 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.55 (d, J = 5.9 Hz, 1H), 7.29 (d, J = 5.8 

Hz, 1H), 4.90 (t, J = 5.7 Hz, 1H), 3.96 (t, J = 5.5 Hz, 2H), 3.66 (q, J = 5.6 Hz, 2H). 13C NMR (150 MHz, 

DMSO-d6) δ 152.8, 147.9, 135.1, 124.7, 116.3, 106.2, 58.4, 50.3. HRMS (ESI): m/z calcd for 

C8H8N4NaO4 [M + Na]+, 247.0438; found, 247.0435.

4-(2-(2-Nitro-8-oxoimidazo[1,2-a]pyrazin-7(8H)-yl)ethyl)morpholin-4-ium 2,2,2-trifluoroacetate; 

17q

Imidazopyrazinone 17a (75 mg, 0.42 mmol), 4-(2-chloroethyl)morpholine hydrochloride (1.5 eq), 

potassium iodide (0.06 eq), K2CO3 (3 eq) and anh. DMF (20 vol) were reacted according to general 

procedure A (µW 120 ºC, 15 min). To achieve conversion of the imidazopyrazinone starting material, 

further portions of potassium iodide (0.09 eq), 4-(2-chloroethyl)morpholine hydrochloride (1.5 eq) and 

anh. K2CO3 (1.5 eq) were added and the reaction heated in the microwave for a further 30 min at 120 ºC 

and then for 15 min at 150 ºC. The reaction was then evaporated to dryness to give crude material 

containing imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a 13:1 ratio by LCMS 

(UV 254 nm). The crude solid was purified over C18 silica gel by MPLC (Grace Reveleris X2, A: H2O 

+ 0.1% TFA, B: ACN + 0.1% TFA, 5–15% B) to yield imidazopyrazinone 17q as a sticky solid (143 

mg, 84%) and imidazopyrazine 18q as a red residue (6 mg, 5%). Major isomer imidazopyrazinone 

17q: LCMS: Rt = 1.58 min, 99 A% @ 254 nm, [M + H]+ = 294.1. 1H NMR (600 MHz, DMSO-d6) δ 9.94 
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(br s, 1H), 8.86 (s, 1H), 7.67 (d, J = 5.9 Hz, 1H), 7.37 (d, J = 5.9 Hz, 1H), 4.31 (t, J = 6.2 Hz, 2H), 4.12 

– 3.89 (m, 2H), 3.85 – 3.32 (m, 4H), 3.29 – 2.95 (m, 2H), 2.92 – 2.60 (m, 2H). 13C NMR (150 MHz, 

DMSO-d6) δ 153.6, 148.0, 135.0, 123.2, 116.6, 107.7, 63.3, 54.3, 52.4, 51.5, 51.0, 41.4. HRMS (ESI): 

m/z calcd for C12H16N5O4 [M + H]+, 294.1197; found, 294.1197. Characterization data of 18q is listed 

below following Compounds 17a-t.

7-(2-Morpholino-2-oxoethyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17r

Imidazopyrazinone 17a (75 mg, 0.42 mmol), K2CO3 and 4-(chloroacetyl)morpholine (1.2 eq), were 

reacted according to general procedure A (rt, 2.5 hr). The reaction volatiles were removed in vacuo. 

Imidazopyrazinone isomer was detected 99: 1 ratio by LCMS (UV 254 nm). A solid precipitated from 

ACN: (H2O + 0.1% TFA) mixture and was filtered. The solid was then washed with water (500 µL) and 

ACN (500 µL) and volatiles removed in vacuo to yield a tan pearlescent solid (80 mg, 63%). LCMS: Rt 

= 2.44 min, 99 A% @ 254 nm, [M + H]+ = 308.1. 1H NMR (600 MHz, DMSO-d6) δ 8.85 (s, 1H), 7.59 

(d, J = 5.9 Hz, 1H), 7.24 (d, J = 5.9 Hz, 1H), 4.89 (s, 2H), 3.66 (t, J = 4.8 Hz, 2H), 3.59 (t, J = 4.9 Hz, 

2H), 3.54 (t, J = 4.9 Hz, 2H), 3.45 (t, J = 4.9 Hz, 2H), 3.33 (s, 1H). 13C NMR (150 MHz, DMSO-d6) δ 

164.8, 152.8, 148.0, 134.8, 124.7, 116.8, 106.6, 66.0, 65.9, 48.7, 44.6, 41.9. HRMS (ESI): m/z calcd for 

C12H13N5NaO5 [M + Na]+, 330.0809; found, 330.0819.

2-(2-Nitro-8-oxoimidazo[1,2-a]pyrazin-7(8H)-yl)acetamide; 17s

Imidazopyrazinone 17a (75 mg, 0.42 mmol), K2CO3 and 2-bromoacetamide (1.2 eq) were reacted 

according to general procedure A at rt for 1.5 h. Imidazopyrazinone isomer was detected 32: 1 ratio by 

HPLC (UV 254 nm). The reaction was then filtered and the precipitate was washed with water (4 x 250 

µL) and MeOH (2 x 250 µL). The crude material was purified over C18 silica gel by MPLC (Grace 

Reveleris X2, A: H2O + 0.1% TFA, B: ACN + 0.1% TFA, 5–25% B) to yield a tan solid (5 mg, 4%). 

LCMS: Rt = 1.75 min, 99 A% @ 254 nm, [M + H]+ = 238.0. 1H NMR (600 MHz, DMSO-d6) δ 8.84 (s, 
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1H), 7.66 (br s, 1H), 7.57 (d, J = 5.9 Hz, 1H), 7.31 (br s, 1H), 7.30 (d, J = 5.8 Hz, 1H), 6.57 (s, 0.3H), 

4.52 (s, 2H). A broad singlet that was exchangeable with water was observed at 6.57 ppm integrating for 

0.3H. This has previously been observed for this class of compounds and is proposed to be due to 

protonation of the imidazopyrazinone core. 13C NMR (150 MHz, DMSO-d6) δ 168.2, 152.9, 148.0, 135.1, 

124.8, 116.6, 106.6, 49.9. HRMS (ESI): m/z calcd for C8H7N5NaO4 [M + Na]+, 260.0390; found, 

260.0392.

7-Cyclohexyl-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 17t

Compound 19t (79 mg, 0.22 mmol) was reacted according to general procedure C, work-up procedure 

B. The crude material was purified by recrystallization (DCM/EtOH) to yield a cream colored crystalline 

solid (42 mg, 68%). Mp = 275–277 °C (decomposed). LCMS: Rt = 3.20 min, 99 A% @ 254 nm, [M + 

H]+ = 263.1. 1H NMR (600 MHz, DMSO-d6) δ 8.76 (s, 1H), 7.58 (d, J = 6.0 Hz, 1H), 7.43 (d, J = 6.1 

Hz, 1H), 4.66 (tt, J = 12.1, 3.8 Hz, 1H), 1.83 (d, J = 13.6 Hz, 2H), 1.74 (d, J = 12.0 Hz, 2H), 1.64 (qd, J 

= 12.3, 3.6 Hz, 3H), 1.41 (qt, J = 12.5, 3.4 Hz, 2H), 1.20 (qt, J = 12.5, 4.0 Hz, 1H). 13C NMR (150 MHz, 

DMSO-d6) δ 152.3, 148.0, 135.0, 119.8, 116.2, 107.1, 53.3, 30.8, 25.3, 24.7. HRMS (ESI): m/z calcd for 

C12H14N4NaO3 [M + Na]+, 285.0958; found, 285.0953.

8-((3-Methylbenzyl)oxy)-2-nitroimidazo[1,2-a]pyrazine; 18g 

Minor isomer imidazopyrazine 18g was isolated from 17g. LCMS: Rt = 3.58 min, 99 A% @ 254 nm, 

[M+H]+  = 285.1; 1H NMR (600 MHz, DMSO-d6) δ 9.02 (t, J = 1.8 Hz, 1H), 8.25 (dt, J = 3.8, 1.7 Hz, 

1H), 7.65 (dt, J = 4.0, 1.8 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.20 (dd, J = 6.8, 3.5 Hz, 1H), 5.55 – 5.51 (m, 

2H), 3.42 (s, 1H), 2.34 (d, J = 2.1 Hz, 3H). Impurities were detected by 1H NMR and this compound was 

not subjected to biological evaluation.

2-Nitro-8-((3-(trifluoromethyl)benzyl)oxy)imidazo[1,2-a]pyrazine; 18h
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Minor isomer imidazopyrazine 18h was isolated from 17h. LCMS: Rt = 3.22 min, 99 A% @ 254 nm, 

[M+H]+  = 339.1; 1H NMR (600 MHz, CDCl3) δ 8.31 (s, 1H), 7.81 – 7.76 (m, 2H), 7.76 – 7.72 (m, 1H), 

7.63 – 7.58 (m, 2H), 7.54 – 7.48 (m, 1H), 5.67 (s, 2H). Impurities were detected by 1H NMR and this 

compound was not subjected to biological evaluation.

2-Nitro-8-((2-(trifluoromethoxy)benzyl)oxy)imidazo[1,2-a]pyrazine; 18i

Minor isomer imidazopyrazine 18i was isolated from 17i. LCMS: Rt = 3.25 min, 99 A% @ 254 nm, 

[M+H]+  = 355.1; 1H NMR (600 MHz, DMSO-d6) δ 9.04 (s, 1H), 8.27 (d, J = 4.7 Hz, 1H), 7.76 – 7.72 

(m, 1H), 7.66 (d, J = 4.7 Hz, 1H), 7.60 – 7.53 (m, 1H), 7.51 – 7.44 (m, 2H), 5.64 (s, 2H); 13C NMR (150 

MHz, DMSO-d6) δ 153.8, 148.2, 146.7, 131.2, 130.6, 130.1, 128.3, 128.0, 127.7, 120.7, 120.2 (q, J = 

258.3 Hz), 116.5, 115.0, 62.7.δ HRMS (ESI): m/z calc for C14H9F3N4O4Na [M+Na]+: 377.0468, found 

377.0470.

2-Nitro-8-(4-(trifluoromethoxy)phenethoxy)imidazo[1,2-a]pyrazine; 18m

Minor isomer imidazopyrazine 18m was isolated from 17m. LCMS: Rt = 3.76 min, 99 A% @ 254 nm, 

[M + H]+ = 369.1. 1H NMR (600 MHz, DMSO-d6) δ 9.01 (s, 1H), 8.22 (d, J = 4.7 Hz, 1H), 7.62 (d, J = 

4.7 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.34 – 7.29 (m, 2H), 4.73 (t, J = 6.7 Hz, 2H), 3.20 (t, J = 6.7 Hz, 2H). 

13C NMR (150 MHz, DMSO-d6) δ 154.3, 148.2, 147.0, 137.7, 130.8, 128.2, 121.1, 120.1 (q, J = 256.2 

Hz), 116.0, 114.9, 67.1, 33.5. HRMS (ESI): m/z calcd for C15H12F3N4O4 [M + H]+, 369.0805; found, 

369.0799.

4-(2-((2-Nitroimidazo[1,2-a]pyrazin-8-yl)oxy)ethyl)morpholin-4-ium 2,2,2-trifluoroacetate; 18q

Minor isomer imidazopyrazine 18q was isolated from 17q. LCMS: Rt = 2.31 min, 97 A% @ 254 nm, 

[M + H]+ = 294.1. 1H NMR (600 MHz, DMSO-d6) δ 9.08 (s, 1H), 8.31 (d, J = 4.7 Hz, 1H), 7.67 (d, J = 
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4.7 Hz, 1H), 4.85 (br s, 2H), 4.27 – 3.02 (m, 10H). Impurities were detected in the 1H NMR analysis and 

therefore the compound was not subjected to biological analysis. 

1-(2,2-Diethoxyethyl)-4-nitro-1H-imidazole-2-carboxamide; 19a

Imidazole-2-carboxamide 16a (650 mg, 3.38 mmol) was reacted according to general procedure A with 

K2CO3, bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 180 °C (2 × 15 min). The crude material 

was triturated with pet. spirits (3 × 3 mL) and dried in vacuo to yield an orange solid (710 mg, 77%). 

LCMS: Rt = 3.04 min, 88 A% @ 254 nm, [M + H - EtOH]+ = 227.0. 1H NMR (400 MHz, CDCl3) δ 7.93 

(s, 1H), 7.93 (br s, 1H), 5.62 (br s, 1H), 4.73 (dd, J = 5.2, 4.5 Hz, 1H), 4.64 (d, J = 5.0 Hz, 2H), 3.75 (dq, 

J = 9.4, 7.1 Hz, 2H), 3.53 (dq, J = 9.4, 7.0 Hz, 2H), 1.19 (t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) 

δ 159.5, 145.3, 136.2, 125.4, 100.5, 64.2, 51.8, 15.2. HRMS (ESI): m/z calcd for C10H16N4NaO5 [M + 

Na]+, 295.1013; found, 295.1010.

N-Benzyl-1-(2,2-diethoxyethyl)-4-nitro-1H-imidazole-2-carboxamide; 19b

Imidazole-2-carboxamide 16b (150 mg, 0.609 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (1.5 eq, 2nd portion = 0.5 eq) at µW 150 °C (30 min, 

followed by 15 min) to yield a waxy yellow solid (219 mg, 99%). LCMS: Rt = 3.72 min, 97 A% @ 254 

nm, [M + H - EtOH]+ = 317.1. 1H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 7.68 (t, J = 4.5 Hz, 1H), 7.40 

– 7.27 (m, 5H), 4.75 (dd, J = 5.3, 4.5 Hz, 1H), 4.68 (d, J = 4.8 Hz, 2H), 4.57 (d, J = 6.1 Hz, 2H), 3.75 

(dq, J = 9.0, 7.3 Hz, 2H), 3.54 (dq, J = 9.4, 6.9 Hz, 2H), 1.19 (t, J = 7.1 Hz, 6H). 13C NMR (150 MHz, 

CDCl3) δ 157.5, 145.2, 136.9, 136.8, 128.8, 128.0, 127.9, 125.2, 100.6, 64.2, 51.6, 43.4, 15.2. HRMS 

(ESI): m/z calcd for C17H22N4NaO5 [M + Na]+, 385.1482; found, 385.1480.

1-(2,2-Diethoxyethyl)-4-nitro-N-(4-(trifluoromethoxy)benzyl)-1H-imidazole-2-carboxamide; 19c
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Imidazole-2-carboxamide 16c (125 mg, 0.332 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 180 °C (2 × 15 min). The crude residue 

was purified over silica gel by MPLC (Biotage, 12–100% EtOAc in pet. spirits gradient) to yield a pale 

yellow waxy solid (112 mg, 76%). LCMS: Rt = 3.40 min, 99 A% @ 254 nm, [M - H]- = 445.0. 1H NMR 

(600 MHz, CDCl3) δ 7.92 (s, 1H), 7.75 (br t, 1H), 7.39 – 7.33 (m, 2H), 7.20 (m, 2H), 4.74 (dd, J = 5.1, 

4.5 Hz, 1H), 4.67 (d, J = 4.8 Hz, 2H), 4.57 (d, J = 6.2 Hz, 2H), 3.75 (dq, J = 9.4, 7.0 Hz, 2H), 3.53 (dq, 

J = 9.4, 7.0 Hz, 2H), 1.18 (t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) δ 157.8, 148.9, 145.4, 136.8, 

136.0, 129.5, 125.4, 121.5, 120.6 (q, J = 256.5 Hz), 100.7, 64.3, 51.7, 42.7, 15.3. HRMS (ESI): m/z calcd 

for C18H21F3N4NaO6 [M + Na]+, 469.1305; found, 469.1316.

1-(2,2-Diethoxyethyl)-N-(4-methylbenzyl)-4-nitro-1H-imidazole-2-carboxamide; 19d

Imidazole-2-carboxamide 16d (75 mg, 0.29 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 150 °C (2 × 30 min) to yield a yellow 

oil which was used without further purification (116 mg with 43 mol% residual DMF by 1H NMR, 98%). 

LCMS: Rt = 3.80 min, 97 A% @ 254 nm, [M + H - EtOH]+ = 331.1. 1H NMR (600 MHz, CDCl3) δ 7.92 

(s, 1H), 7.67 (d, J = 5.7 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.19 – 7.14 (m, 2H), 4.76 (t, J = 4.9 Hz, 1H), 4.68 

(d, J = 4.9 Hz, 2H), 4.54 (d, J = 6.1 Hz, 2H), 3.77 (dq, J = 9.4, 7.0 Hz, 2H), 3.55 (dq, J = 9.4, 7.0 Hz, 

2H), 2.35 (s, 3H), 1.19 (t, J = 7.0 Hz, 5H). 13C NMR (151 MHz, CDCl3) δ 157.5, 145.2, 137.6, 136.9, 

133.9, 129.5, 128.0, 125.2, 100.6, 64.2, 51.6, 43.2, 21.1, 15.2. HRMS (ESI): m/z calcd for C18H24N4NaO5 

[M + Na]+, 399.1639; found, 399.1643.

1-(2,2-Diethoxyethyl)-N-(4-fluorobenzyl)-4-nitro-1H-imidazole-2-carboxamide; 19e

Imidazole-2-carboxamide 16e (311 mg, 1.18 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 180 °C (2 × 15 min). The crude residue 

was purified over silica gel by MPLC (Biotage, 10–60% EtOAc in pet. spirits gradient) to yield a pale 
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yellow oil (411 mg, 92%). LCMS: Rt = 3.76 min, 99 A% @ 254 nm, [M + H - EtOH]+ = 335.0. 1H NMR 

(400 MHz, CDCl3) δ 7.91 (s, 1H), 7.70 (br s, 1H), 7.35 – 7.27 (m, 2H), 7.09 – 6.98 (m, 2H), 4.74 (dd, J 

= 5.2, 4.4 Hz, 1H), 4.67 (d, J = 4.8 Hz, 2H), 4.60 – 4.50 (m, 2H), 3.75 (dq, J = 9.4, 7.0 Hz, 2H), 3.54 (dq, 

J = 9.4, 7.0 Hz, 2H), 1.18 (t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) δ 162.4 (d, J = 245.19 Hz), 

157.6, 145.3, 136.8, 132.8 (d, J = 3.8 Hz), 129.7 (d, J = 8.1 Hz), 125.2, 115.7 (d, J = 21.6 Hz), 100.6, 

64.2, 51.6, 42.7, 15.2. HRMS (ESI): m/z calcd for C17H21F1N4NaO5 [M + Na]+, 403.1388; found, 

403.1389.

1-(2,2-Diethoxyethyl)-4-nitro-N-(3-(trifluoromethoxy)benzyl)-1H-imidazole-2-carboxamide; 19f

Imidazole-2-carboxamide 16f (75 mg, 0.23 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 150 °C (2 × 30 min) to yield an orange 

solid which was used without further purification (108 mg, quant.). LCMS: Rt = 3.88 min, 95 A% @ 254 

nm, [M + H - EtOH]+ = 401.1. 1H NMR (600 MHz, CDCl3) δ 7.94 (s, 1H), 7.81 (t, J = 6.1 Hz, 1H), 7.39 

(t, J = 7.9 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.21 – 7.14 (m, 2H), 4.75 (dd, J = 5.2, 4.5 Hz, 1H), 4.69 (d, J = 

4.8 Hz, 2H), 4.60 (d, J = 6.3 Hz, 2H), 3.76 (dq, J = 9.4, 7.1 Hz, 2H), 3.54 (dq, J = 9.4, 7.0 Hz, 2H), 1.19 

(t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) δ 157.7, 149.5, 145.2, 139.5, 136.6, 130.2, 126.1, 125.3, 

120.4 (q, J = 260.9 Hz), 120.4, 120.2, 100.5, 64.2, 51.6, 42.7, 15.1. HRMS (ESI): m/z calcd for 

C18H21F3N4NaO6 [M + Na]+, 469.1305; found, 469.1306.

1-(2,2-Diethoxyethyl)-4-nitro-N-(pyridin-2-ylmethyl)-1H-imidazole-2-carboxamide; 19k

Imidazole-2-carboxamide 16k (150 mg, 0.607 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (1.5 eq, 2nd portion = 0.5 eq) at µW 150 °C (30 min, 

followed by 15 min) to yield a red oil which was used without further purification (153 mg, 69%). LCMS: 

Rt = 3.13 min, 97 A% @ 254 nm, [M + H - EtOH]+ = 318.1. 1H NMR (600 MHz, DMSO-d6) δ 9.41 (t, 

J = 6.1 Hz, 1H), 8.52 (s, 1H), 8.51 (ddd, J = 4.7, 1.7, 1.0 Hz, 1H), 7.76 (td, J = 7.7, 1.8 Hz, 1H), 7.32 (d, 
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J = 8.3 Hz, 1H), 7.27 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 4.79 (t, J = 5.2 Hz, 1H), 4.60 (d, J = 5.2 Hz, 2H), 

4.53 (d, J = 6.1 Hz, 2H), 3.61 (dq, J = 9.7, 7.0 Hz, 2H), 3.41 (dq, J = 9.7, 7.0 Hz, 2H), 1.02 (t, J = 7.0 

Hz, 6H). 13C NMR (150 MHz, DMSO-d6) δ 157.9, 157.7, 148.9, 144.4, 137.7, 136.7, 126.4, 122.2, 120.9, 

100.0, 62.8, 50.3, 44.1, 15.1. HRMS (ESI): m/z calcd for C16H22N5O5 [M + H]+, 364.1615; found, 

364.1622.

1-(2,2-Diethoxyethyl)-N-(1-(4-fluorophenyl)ethyl)-4-nitro-1H-imidazole-2-carboxamide; 19l

Imidazole-2-carboxamide 16l (75 mg, 0.27 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (1.5 eq, 2nd portion = 1 eq) at µW 150 °C (2 × 30 min) to 

yield a yellow oil (113 mg, quant) which was used without further purification. LCMS: Rt = 3.80 min, 

97 A% @ 254 nm, [M + H - EtOH]+ = 349.1. 1H NMR (600 MHz, CDCl3) δ 7.92 (s, 1H), 7.60 (d, J = 

8.2 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.08 – 7.01 (m, 2H), 5.20 (p, J = 7.2 Hz, 1H), 4.74 – 4.66 (m, 2H), 

4.65 – 4.56 (m, 1H), 3.77 – 3.69 (m, 2H), 3.52 (dq, J = 9.4, 7.0 Hz, 2H), 1.60 (d, J = 7.0 Hz, 3H), 1.17 

(dt, J = 12.1, 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) δ 162.1 (d, J = 245.3 Hz), 156.8, 145.2, 138.1 

(d, J = 3.0 Hz), 136.8, 127.8 (d, J = 8.2 Hz), 125.3, 115.6 (d, J = 21.8 Hz), 100.5, 64.1, 51.6, 48.5, 21.9, 

15.1. HRMS (ESI): m/z calcd for C18H23FN4NaO5 [M + Na]+, 417.1545; found, 417.1537.

1-(2,2-Diethoxyethyl)-N-(4-methylphenethyl)-4-nitro-1H-imidazole-2-carboxamide; 19n

Imidazole-2-carboxamide 16n (75 mg, 0.27 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 150 °C (2 × 30 min) to yield a yellow 

oil which was used without further purification (112 mg, quant.). LCMS: Rt = 3.85 min, 98 A% @ 254 

nm, [M + H - EtOH]+ = 345.1. 1H NMR (600 MHz, CDCl3) δ 7.90 (s, 1H), 7.46 (t, J = 6.2 Hz, 1H), 7.19 

– 7.03 (m, 4H), 4.72 (t, J = 4.9 Hz, 1H), 4.64 (d, J = 4.9 Hz, 2H), 3.76 (dq, J = 9.4, 7.0 Hz, 2H), 3.64 (dt, 

J = 7.7, 6.5 Hz, 2H), 3.53 (dq, J = 9.4, 7.0 Hz, 2H), 2.91 – 2.85 (m, 2H), 2.34 (s, 3H), 1.19 (t, J = 7.0 Hz, 

6H). 13C NMR (150 MHz, CDCl3) δ 157.6, 145.1, 136.9, 136.2, 135.1, 129.4, 128.6, 125.1, 100.7, 64.2, 
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51.6, 40.8, 35.3, 21.0, 15.2. HRMS (ESI): m/z calcd for C19H26N4NaO5 [M + Na]+, 413.1795; found, 

413.1797.

N-Cyclohexyl-1-(2,2-diethoxyethyl)-4-nitro-1H-imidazole-2-carboxamide; 19t

Imidazole-2-carboxamide 16t (75 mg, 0.31 mmol) was reacted according to general procedure A with 

K2CO3 and bromoacetaldehyde diethyl acetal (1.5 eq, 2nd portion = 1 eq) at µW 150 °C (2 × 30 min) to 

yield an orange solid (107 mg, 96%) which was used without further purification. LCMS: Rt = 3.78 min, 

97 A% @ 254 nm, [M + H]+ = 309.1. 1H NMR (600 MHz, CDCl3) δ 7.90 (s, 1H), 7.24 (d, J = 8.5 Hz, 

1H), 4.75 (t, J = 5.0 Hz, 1H), 4.65 (d, J = 5.0 Hz, 2H), 3.88 (tdt, J = 11.9, 8.2, 3.9 Hz, 1H), 3.76 (dq, J = 

9.3, 7.1 Hz, 2H), 3.54 (dq, J = 9.3, 7.0 Hz, 2H), 2.02 – 1.96 (m, 2H), 1.83 – 1.77 (m, 2H), 1.72 – 1.62 

(m, 1H), 1.44 – 1.35 (m, 2H), 1.35 – 1.25 (m, 3H), 1.19 (t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) 

δ 156.8, 145.1, 137.2, 125.1, 100.7, 64.2, 51.7, 48.8, 32.9, 25.3, 25.0, 15.2. HRMS (ESI): m/z calcd for 

C16H26N4NaO5 [M + Na]+, 377.1795; found, 377.1794.

Imidazo[1,2-a]pyrazin-8(7H)-one; 20a

To a stirred suspension of imidazole 23a (168 mg, 0.741 mmol) in H2O (20 vol.) was added 5% w/v HCl 

(530 µL, 1 eq). The solution was heated to reflux for 2 h, cooled to rt and concentrated in vacuo to 

dryness. The solid was purified by recrystallization (slurry equilibration with hot MeOH) to yield beige 

crystals (50 mg, 50%). Mp = 307–308 °C (decomposed). LCMS (Waters Atlantis): Rt = 1.75 min, 99 

A% @ 254 nm, [M + H]+ = 136.1 1H NMR (400 MHz, DMSO-d6) δ 8.20 (d, J = 1.7 Hz, 1H), 8.01 (d, J 

= 1.7 Hz, 1H), 7.75 (d, J = 5.6 Hz, 1H), 7.23 (t, J = 5.6 Hz, 1H). 13C NMR (150 MHz, DMSO-d6) δ 

151.3, 135.1, 126.3, 119.7, 118.3, 107.2. HRMS calcd for C12H10N6NaO2 [2M + Na]+, 293.0757; found, 

293.0764. The proton spectra was consistent with literature.35

7-Benzylimidazo[1,2-a]pyrazin-8(7H)-one; 20b
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To a stirred suspension of compound 23b (120 mg, 0.378 mmol) in H2O (20 vol.) was added 5% aq. HCl 

(270 µL, 1 eq). The reaction was heated at 80 °C for 3 days before further addition of 5% aq. HCl (135 

µL, 0.5 eq). The reaction mixture was then washed with EtOAc (3 × 5 mL followed by 3 × 10 mL). The 

aqueous layer was then evaporated to dryness. The crude material was purified over C18 silica gel by 

MPLC (Grace Reveleris X2. A: H2O + 0.1% TFA, B: ACN + 0.1% TFA, 10–30% B) to yield a colorless 

solid (47 mg, 39%). LCMS: Rt = 2.14 min, 98 A% @ 254 nm, [M + H]+ = 226.0. 1H NMR (600 MHz, 

DMSO-d6) δ 7.93 (d, J = 1.2 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.40 – 7.27 (m, 6H), 5.14 (s, 2H). 13C NMR 

(151 MHz, DMSO-d6) δ 152.1, 136.7, 136.0, 130.3, 128.5, 127.6, 127.6, 121.6, 117.8, 107.4, 49.8. 

HRMS (ESI): m/z calcd for C13H11N3NaO [M + Na]+, 248.0794; found, 249.0799.

7-(4-Fluorobenzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 20c

Imidazopyrazinone 20a (100 mg, 0.740 mmol), K2CO3 and 4-fluorobenzyl bromide (1.2 eq), were 

reacted according to general procedure A at rt for 45 min. The imidazopyrazinone regioisomer was 

detected as the preferred isomer (24: 1 ratio) by HPLC (UV 254 nm). The crude material was purified 

by recrystallization (EtOH) to yield a colorless solid (34 mg, 19%). Mp = 168–169 °C. LCMS: Rt = 2.94 

min, 99 A% @ 254 nm, [M + H]+ = 244.1. 1H NMR (400 MHz, DMSO-d6) δ 7.84 – 7.78 (m, 1H), 7.61 

(d, J = 5.8 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.45 – 7.36 (m, 2H), 7.24 (d, J = 5.9 Hz, 1H), 7.22 – 7.12 (m, 

2H), 5.09 (s, 2H). 13C NMR (150 MHz, DMSO-d6) δ 161.6 (d, J = 243.2 Hz), 153.0, 137.0, 133.4 (d, J 

= 3.0 Hz), 132.7, 129.9 (d, J = 8.5 Hz), 120.4, 117.6, 115.4 (d, J = 21.7 Hz), 107.5, 49.1. HRMS (ESI): 

m/z calcd for C13H11FN3O [M + H]+, 244.0881; found, 244.0884.

N-(Benzyl)-1H-imidazole-2-carboxamide; 22b 

1H-Imidazole-2-carboxylic acid 21a (1.08 g, 9.60 mmol) was refluxed in SOCl2 (10 mL) under N2 for 

22 h. Volatiles were removed in vacuo and residual SOCl2 was removed by co-evaporation with toluene 

to give the crude acid chloride intermediate. Benzylamine (478 μL, 4.38 mmol) was added drop wise to 
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acid chloride (476 mg, 3.65 mmol) suspended in anh. THF (13 mL) under an atmosphere of N2. The light 

brown precipitate was filtered and washed with THF to yield a tan solid (685 mg, 79%) that was used 

without further purification. LCMS: Rt = 2.68 min, 99 A% @ 254 nm, [M + H]+ = 202.1. 1H NMR (600 

MHz, CDCl3) δ 8.97 (t, J = 5.7 Hz, 1H), 7.49–7.04 (m, 7H), 4.43 (d, J = 6.2 Hz, 2H). 13C NMR (150 

MHz, CDCl3) δ 158.3, 140.9, 139.5, 134.0, 128.1, 127.1, 126.6, 119.6 (br), 41.8. 

1-(2,2-Diethoxyethyl)-1H-imidazole-2-carboxamide; 23a

Imidazole-2-carboxamide 22a (650 mg, 5.85 mmol) was reacted according to general procedure A with 

K2CO3, bromoacetaldehyde diethyl acetal (2 × 1.5 eq) at µW 120 °C (2 × 15 min) to yield a yellow solid 

that was used without further purification (1.08 g, 81%). LCMS: Rt = 2.65 min, 99 A% @ 254 nm, [M 

+ H- EtOH]+ = 182.1. 1H NMR (400 MHz, CDCl3) δ 7.23 (br s, 1H), 7.12 (d, J = 1.1 Hz, 1H), 7.01 (d, J 

= 1.1 Hz, 1H), 5.33 (br s, 1H), 4.84 – 4.60 (m, 1H), 4.53 (d, J = 5.3 Hz, 2H), 3.73 (dq, J = 9.4, 7.0 Hz, 

2H), 3.48 (dq, J = 9.4, 7.0 Hz, 2H), 1.16 (t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) δ 161.1, 137.8, 

127.6, 126.7, 101.8, 64.0, 51.0, 15.2. NMR data was consistent with literature.35 

N-Benzyl-1-(2,2-diethoxyethyl)-1H-imidazole-2-carboxamide; 23b

Imidazole-2-carboxamide 22b (201 mg, 0.846 mmol) was reacted according to general procedure A with 

K2CO3, bromoacetaldehyde diethyl acetal (1 eq, 2nd portion = 0.2 eq) at µW 180 °C (2 × 15 min). Crude 

product was obtained as a yellow oil (246 mg, 92%) which was used without further purification. LCMS: 

Rt = 2.37 min, 89 A% @ 254 nm, [M + H]+ = 318.2. 1H NMR (600 MHz, CDCl3) δ 7.79 (t, J = 6.3 Hz, 

1H), 7.40 – 7.34 (m, 4H), 7.34 – 7.30 (m, 1H), 7.14 (d, J = 1.0 Hz, 1H), 7.01 (d, J = 1.0 Hz, 1H), 4.79 (t, 

J = 5.5 Hz, 1H), 4.61 (d, J = 6.3 Hz, 2H), 4.60 (d, J =5.5 Hz, 2H), 3.77 (dq, J = 9.4, 7.0 Hz, 2H), 3.52 

(dq, J = 9.4, 7.0 Hz, 2H), 1.20 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 159.0, 138.5, 137.9, 
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128.7, 127.7, 127.5, 127.4, 126.3, 101.9, 64.0, 50.8, 43.1, 15.2. HRMS (ESI): m/z calcd for 

C34H46N6NaO6 [2M + Na]+, 657.3371; found, 657.3392.

2-Nitro-6-phenylimidazo[1,2-a]pyrazin-8(7H)-one; 24a

Compound 27a (230 mg, 0.839 mmol) was reacted according to general procedure C to yield a crystalline 

yellow solid (181 mg, 84%). Mp = 342 °C (decomposed). LCMS: Rt = 3.05 min, 99 A% @ 254 nm, [M 

+ H]+ = 257.0. 1H NMR (600 MHz, DMSO-d6) δ 11.97 (s, 1H), 8.79 – 8.73 (s, 1H), 7.83 (s, 1H), 7.71 – 

7.64 (m, 2H), 7.57 – 7.48 (m, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.6, 147.9, 134.6, 132.1, 130.7, 

129.9, 129.0, 126.8, 116.7, 104.6. HRMS (ESI): m/z calcd for C12H8N4NaO3 [M + Na]+, 279.0489; found, 

279.0482.

2-Nitro-6-phenylimidazo[1,2-a]pyrazin-8(7H)-one; 24a

Imidazole-2-carboxamide 13a (450 mg, 2.34 mmol) was reacted according to general procedure E with

2-bromoacetophenone (1.2 eq) in anh. DMF (20 vol). HCl (2M aq., 20 vol) was then added slowly and 

reaction was then heated (µW 120 °C for 1 h, 150 °C for 15 min) and the product isolated to yield a 

brown solid (242 mg, 40%). LCMS: Rt = 3.02 min, 98 A% @ 254 nm, [M + H]+ = 257.0. 1H NMR (600 

MHz, DMSO-d6) δ 11.99 (s, 1H), 8.77 (s, 1H), 7.83 (s, 1H), 7.69 – 7.67 (m, 2H), 7.55 – 7.50 (m, 3H). 

Proton spectrum consistent with preparation using 4-nitroimidazole 21a as starting material.

2-((2-Nitro-6-phenylimidazo[1,2-a]pyrazin-8-yl)oxy)ethyl acetate; 24b and 2-(2-nitro-8-oxo-6-

phenylimidazo[1,2-a]pyrazin-7(8H)-yl)ethyl acetate; 24c

Imidazopyrazinone 24a (280 mg, 1.09 mmol) was reacted according to general procedure A with K2CO3 

and 2-bromoethylacetate (2 × 1.5 eq) with heating (2 × µW 80 °C, 30 min). The crude material contained 

imidazopyrazinone (minor) and imidazopyrazine (major) isomers in a 1:5.7 ratio by NMR. The crude 

material was purified over C18 silica gel by MPLC (Grace Reveleris, A: H2O + 0.1% TFA, B: ACN + 
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0.1% TFA, 20–100% B) to yield imidazopyrazine as a yellow solid (231 mg, 62%) and 

imidazopyrazinone as a yellow solid (19 mg, 5%). Minor isomer imidazopyrazinone 24b: LCMS: Rt 

= 2.59 min, 99 A% @ 254 nm, [M + H]+ = 343.0. 1H NMR (600 MHz, DMSO-d6) δ 8.74 (s, 1H), 7.60 – 

7.52 (m, 5H), 7.50 (s, 1H), 4.10 – 4.02 (m, 4H), 1.89 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.0, 

153.3, 148.1, 134.6, 134.1, 131.3, 129.9, 129.8, 128.8, 116.1, 106.8, 60.7, 43.4, 20.6. HRMS (ESI): m/z 

calcd for C16H14N4Na1O5 [M + Na]+, 365.0856; found, 365.0858. Major isomer imidazopyrazine 24c: 

LCMS: Rt = 2.93 min, 99 A% @ 254 nm, [M + H]+ = 343.0. 1H NMR (600 MHz, DMSO-d6) δ 8.95 (s, 

1H), 8.86 (s, 1H), 8.03 – 7.98 (m, 2H), 7.57 – 7.51 (m, 2H), 7.49 – 7.43 (m, 1H), 4.89 – 4.84 (m, 2H), 

4.53 – 4.48 (m, 2H), 2.05 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.3, 153.0, 148.4, 136.8, 135.0, 

129.5, 129.2, 128.9, 125.7, 115.1, 111.9, 65.0, 62.0, 20.7. HRMS (ESI): m/z calcd for C16H14N4Na1O5 

[M + Na]+, 365.0856; found, 365.0861. 

7-(2-Hydroxyethyl)-2-nitro-6-phenylimidazo[1,2-a]pyrazin-8(7H)-one; 24d

Compound 24b (19 mg, 55 µmol) was reacted according to general procedure D. After 25 min volatiles 

were removed under a stream of N2. The residue was diluted with H2O (2 mL) then extracted with EtOAc 

(3 × 2 mL) followed by DCM (3 × 2 mL). The organic layer was further diluted with EtOAc (14 mL), 

washed with brine (20 mL), dried with anh. MgSO4 and filtered. Volatiles were removed in vacuo to give 

a yellow residue which was purified over silica gel by MPLC (Grace Reveleris X2, 4–15% MeOH in 

DCM) then over C18 silica gel by MPLC (Grace Reveleris, A: H2O + 0.1% TFA, B: ACN + 0.1% TFA, 

15–40% B) to yield a yellow-brown solid (3.8 mg, 17%). LCMS: Rt = 2.52 min, 99 A% @ 254 nm, [M 

+ H]+ = 301.1. 1H NMR (600 MHz, DMSO-d6) δ 8.73 (s, 1H), 7.59 – 7.51 (m, 5H), 7.46 (s, 1H), 4.77 (s, 

1H), 3.85 (t, J = 6.3 Hz, 2H), 3.43 (br t, J = 6.7 Hz, 2H). 13C NMR (150 MHz, DMSO-d6) δ 153.2, 148.0, 

135.1, 134.4, 131.7, 129.9, 129.7, 128.6, 115.9, 106.5, 57.5, 46.6. HRMS (ESI): m/z calcd for 

C14H12N4Na1O4 [M + Na]+, 323.0751; found, 323.0759.
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2-((2-Nitro-6-phenylimidazo[1,2-a]pyrazin-8-yl)oxy)ethan-1-ol; 24e

Compound 24c (146 mg, 0.427 mmol) was reacted according to general procedure D, work-up procedure 

B. The crude material was purified by MPLC (Grace Reveleris X2, A: H2O + 0.1% TFA, B: ACN + 

0.1% TFA, 30–100% B) to yield a bright yellow solid (13 mg, 10%). LCMS: Rt = 3.36 min, 98 A% @ 

254 nm, [M + H]+ = 301.0. 1H NMR (600 MHz, DMSO-d6) δ 8.94 (s, 1H), 8.83 (s, 1H), 8.04 – 7.98 (m, 

2H), 7.57 – 7.51 (m, 2H), 7.49 – 7.43 (m, 1H), 4.69 – 4.64 (m, 2H), 3.91 – 3.86 (m, 2H). 13C NMR (150 

MHz, DMSO-d6) δ 153.4, 148.3, 137.0, 135.1, 129.6, 129.1, 128.9, 125.7, 115.0, 111.6, 68.7, 58.9. 

HRMS (ESI): m/z calcd for C14H12N4NaO4 [M + Na]+, 323.0751; found, 323.0756.

6-Methyl-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 25a

Imidazole-2-carboxamide 16a (1.50 g, 7.79 mmol) was reacted according to general procedure E with

chloroacetone (1.3 eq) to yield a yellow solid (1.01 g, 67%). LCMS: Rt = 2.35 min, 99 A% @ 254 nm, 

[M + H]+ = 195.0. 1H NMR (600 MHz, DMSO-d6) δ 11.66 (s, 1H), 8.76 (s, 1H), 7.34 – 7.29 (m, 1H), 

2.12 (d, J = 1.2 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.4, 147.7, 134.4, 129.5, 116.2, 103.9, 

15.7. HRMS (ESI): m/z calcd for C14H12N8NaO6 [2M + Na]+, 411.0772; found, 411.0782.

2-(6-Methyl-2-nitro-8-oxoimidazo[1,2-a]pyrazin-7(8H)-yl)ethyl acetate; 25b and 2-((6-methyl-2-

nitroimidazo[1,2-a]pyrazin-8-yl)oxy)ethyl; 25c

Compound 25a (150 mg, 0.773 mmol) was reacted according to general procedure A with K2CO3 and 2-

bromoethyl acetate (2 × 2 eq) with heating (2 × µW 80 °C, 30 min). The crude material contained 

imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a 2.4:1 ratio by NMR. The crude 

solid was purified over silica gel by MPLC (Grace Reveleris X2, 0–10% MeOH in DCM gradient) to 

yield imidazopyrazinone as a yellow solid (140 mg, 48%) and imidazopyrazine as a yellow solid (57 mg, 

21%). Major isomer imidazopyrazinone 25b: LCMS: Rt = 2.80 min, 99 A% @ 254 nm, [M + H]+ = 

281.1. 1H NMR (600 MHz, DMSO-d6) δ 8.76 (s, 1H), 7.45 (q, J = 1.2 Hz, 1H), 4.27 (t, J = 5.6 Hz, 2H), 
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4.21 (t, J = 5.5 Hz, 2H), 2.35 (d, J = 1.2 Hz, 3H), 1.98 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.2, 

153.4, 147.9, 133.8, 131.2, 115.7, 104.8, 61.1, 42.4, 20.6, 16.8. HRMS (ESI): m/z calcd for C11H13N4O5 

[M + H]+, 281.0880; found, 281.0878. Minor isomer imidazopyrazine 25c: LCMS: Rt = 3.23 min, 99 

A% @ 254 nm, [M + H]+ = 281.1. 1H NMR (600 MHz, DMSO-d6) δ 8.96 (s, 1H), 8.06 (q, J = 1.1 Hz, 

1H), 4.70 – 4.65 (m, 2H), 4.46 – 4.41 (m, 2H), 2.33 (d, J = 1.1 Hz, 3H), 2.05 (s, 3H). 13C NMR (151 

MHz, DMSO) δ 170.4, 152.8, 148.1, 136.9, 129.0, 114.4, 112.4, 64.8, 62.0, 20.7, 20.4. HRMS (ESI): 

m/z calcd for C11H13N4O5 [M + H]+, 281.0880; found, 281.0890.

7-(2-Hydroxyethyl)-6-methyl-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 25d

Imidazopyrazinone 25b (50 mg, 0.18 mmol) was reacted according to general procedure D, work-up 

procedure B. The crude material was purified over C18 silica gel by MPLC (Grace Reveleris, A: H2O + 

0.1% TFA, B: ACN + 0.1% TFA, 5–25% B) to yield a yellow solid (35 mg, 83%). LCMS: Rt = 2.42 

min, 99 A% @ 254 nm, [M + H]+ = 239.0. 1H NMR (600 MHz, DMSO-d6) δ 8.75 (s, 1H), 7.42 (q, J = 

1.2 Hz, 1H), 4.95 (t, J = 5.8 Hz, 1H), 4.02 (t, J = 5.7 Hz, 2H), 3.64 (q, J = 5.7 Hz, 2H), 2.36 (d, J = 1.2 

Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.3, 147.9, 134.0, 132.0, 115.5, 104.3, 58.1, 45.9, 17.3. 

HRMS (ESI): m/z calcd for C18H20N8NaO8 [2M + Na]+, 499.1296; found, 499.1296.

2-((6-Methyl-2-nitroimidazo[1,2-a]pyrazin-8-yl)oxy)ethan-1-ol; 25e 

Imidazopyrazine 25c (20 mg, 71 µmol) was reacted according to general procedure D, work-up 

procedure B. The crude material was purified over C18 silica gel by MPLC (Grace Reveleris, A: H2O + 

0.1% TFA, B: ACN + 0.1% TFA, 10–30% B) to yield a yellow solid product (11 mg, 67%). LCMS: Rt 

= 2.78 min, 99 A% @ 254 nm, [M + H]+ = 239.0. 1H NMR (600 MHz, DMSO-d6) δ 8.94 (s, 1H), 8.03 

(q, J = 1.1 Hz, 1H), 5.00 (t, J = 5.5 Hz, 1H), 4.51 – 4.46 (m, 2H), 3.84 – 3.78 (m, 2H), 2.32 (d, J = 1.1 

Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.3, 148.1, 137.1, 129.2, 114.3, 112.0, 68.6, 58.9, 20.5. 

HRMS (ESI): m/z calcd for C18H20N8NaO8 [2M + Na]+, 499.1296; found, 499.1315. 
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6-Methyl-2-nitro-7-(4-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 25f and 6-

methyl-2-nitro-8-((4-(trifluoromethoxy)benzyl)oxy)imidazo[1,2-a]pyrazine; 25g

Compound 25a (150 mg, 0.773 mmol), K2CO3, and 1-(bromomethyl)4-(trifluoromethoxy)benzene (1.2 

eq) were reacted according to general procedure A at rt for 3 h, work-up B. The crude material contained 

imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a 7.2:1 ratio by NMR. The crude 

solid was purified over silica gel by MPLC (Grace Reveleris X2, 0–7% MeOH in DCM gradient) to yield 

imidazopyrazinone as an off-white solid (197 mg, 69%) and imidazopyrazine as a colorless solid (27 mg, 

9%). Major isomer imidazopyrazinone 25f: LCMS: Rt = 3.52 min, 99 A% @ 254 nm, [M + H]+ = 

369.0. 1H NMR (600 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.50 (q, J = 1.2 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.36 

– 7.32 (m, 2H), 5.31 (s, 2H), 2.21 (d, J = 1.2 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.7, 148.0, 

147.4, 136.1, 134.0, 131.0, 128.3, 121.4, 120.1 (q, J = 256.4 Hz), 115.9, 105.2, 45.3, 16.6. HRMS (ESI): 

m/z calcd for C15H12F3N4O4 [M + H]+, 369.0805; found, 369.0803. Minor isomer imidazopyrazine 25g: 

LCMS: Rt = 3.86 min, 99 A% @ 254 nm, [M + H]+ = 369.1. 1H NMR (600 MHz, DMSO-d6) δ 8.96 (s, 

1H), 8.08 (q, J = 1.1 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.46 – 7.41 (m, 2H), 5.58 (s, 2H), 2.36 (d, J = 1.1 Hz, 

3H). 13C NMR (151 MHz, DMSO) δ 152.7, 148.2, 148.2, 137.0, 135.3, 130.6, 129.1, 121.1, 120.1 (q, J 

= 257.1 Hz), 114.4, 112.5, 67.2, 20.4. HRMS (ESI): m/z calcd for C15H12F3N4NaO4 [M + Na]+, 391.0625; 

found, 391.0629.

6-Methyl-7-(4-methylbenzyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 25h and 6-methyl-8-((4-

methylbenzyl)oxy)-2-nitroimidazo[1,2-a]pyrazine; 25i

Compound 25a (150 mg, 0.773 mmol) was reacted according to general procedure method A with 

Cs2CO3 and 4-methylbenzyl bromide (1.2 eq) with heating (µW 80 °C for 10 min, then 90 °C at 10 min) 

followed by rt overnight, work up B. The crude material contained imidazopyrazinone (major) and 

imidazopyrazine (minor) isomers in a ratio of 1.8:1 by LC-MS (UV 254 nm). The crude product was 
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purified over silica gel by MPLC (Biotage Isolera, 0-4% DCM/MeOH) to give imidazopyrazinone as 

light yellow powder (150 mg, 65%) and imidazopyrazine as a light orange solid (21 mg, 9%). Major 

isomer imidazopyrazinone 25h: LCMS: Rt = 2.92 min, 99 A% @ 254 nm, [M+H]+  = 299.1. 1H NMR 

(600 MHz, DMSO-d6) δ 8.79 (s, 1H), 7.48 (d, J = 1.3 Hz, 1H), 7.17 – 7.08 (m, 4H), 5.24 (s, 2H), 2.27 

(s, 3H), 2.20 (d, J = 1.3 Hz, 3H); 13C NMR (150 MHz, DMSO-d6) δ 153.6, 148.0, 136.4, 133.9, 133.5, 

131.1, 129.2, 126.1, 115.8, 105.0, 45.5, 20.6, 16.5. HRMS (ESI): m/z calc for C15H14N4O3Na [M+Na]+: 

321.0958, found 321.0957. Minor isomer imidazopyrazine 25i: LCMS: Rt = 3.26 min, 99 A% @ 254 

nm, [M+H]+  = 299.1; 1H NMR (600 MHz, DMSO-d6) δ 8.94 (d, J = 0.9 Hz, 1H), 8.06 (t, J = 1.1 Hz, 

1H), 7.43 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 7.7 Hz, 2H), 5.49 (s, 2H), 2.36 (d, J = 1.1 Hz, 3H), 2.32 (s, 

3H); 13C NMR (150 MHz, DMSO-d6) δ 152.9, 148.1, 137.7, 137.0, 132.7, 129.1, 129.0, 128.7, 114.3, 

112.3, 68.1, 20.8, 20.4. HRMS (ESI): m/z calc for C15H14N4O3Na [M+Na]+: 321.0958, found 321.0958.

6-Methyl-2-nitro-7-(3-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 25j

Compound 25a (120 mg, 0.618 mmol), Cs2CO3, and 1-(bromomethyl)-3-(trifluoromethoxy)benzene (1.2 

eq) was reacted according to general procedure A with heating (µW 80 °C) for 10 min, work-up B.  The 

crude material contained imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a ratio of 

4.3:1 by LC-MS (UV 254 nm). The crude product was purified over silica gel by MPLC (Biotage Isolera, 

2-4% DCM/MeOH) to give imidazopyrazinone as white powder (122 mg, 54%) and imidazopyrazine as 

white solid. Major isomer imidazopyrazinone 25j: LCMS: Rt = 3.49 min, 99 A% @ 254 nm, [M+H]+  

= 368.8. 1H NMR (600 MHz, DMSO-d6) δ 8.80 (s, 1H), 7.51 – 7.45 (m, 2H), 7.32 – 7.23 (m, 3H), 5.33 

(s, 2H), 2.20 (d, J = 1.3 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.7, 148.6, 147.9, 139.5, 134.0, 

130.9, 130.7, 125.2, 120.0 (q, J = 256.9 Hz), 119.6, 119.1, 115.9, 105.2, 45.4, 16.6. HRMS (ESI): m/z 

calc for C15H11F3N4O4Na [M+Na]+: 391.0624, found 391.0625. Minor isomer imidazopyrazine 25k: 

LCMS: Rt = 3.79 min, 65 A% @ 254 nm, [M+H]+  = 368.8; Impurity detected at Rt = 4.03 min, 35 A% 

@ 254 nm, [M+H]+  = 737.2. This compound was not subjected to biological evaluation.
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6-Methyl-2-nitro-7-(2-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 25l and 6-

methyl-2-nitro-8-((2-(trifluoromethoxy)benzyl)oxy)imidazo[1,2-a]pyrazine; 25m

Compound 25a (120 mg, 0.618 mmol), Cs2CO3, and 2-(trifluoromethoxy)benzyl bromide (1.2 eq) were 

reacted according to general procedure A with heating (µW 80 °C) for 10 min, work-up B. The crude 

material contained imidazopyrazinone (major) and imidazopyrazine (minor) isomers in a ratio of 1.3:1 

by LC-MS (UV 254 nm). The crude product was purified over silica gel by MPLC (Biotage Isolera, 0-

4% DCM/MeOH) to yield imidazopyrazinone as white powder (76 mg, 33%) and imidazopyrazine as 

cream powder (cream powder, 18 mg, 8%). Major isomer imidazopyrazinone 25l: LCMS: Rt = 3.48 

min, 99 A% @ 254 nm, [M+H]+  = 369.0; 1H NMR (600 MHz, DMSO-d6) δ 8.83 (s, 1H), 7.54 (d, J = 

1.3 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.36 – 7.30 (m, 1H), 7.11 (dt, J = 7.8, 1.0 Hz, 1H), 5.30 (s, 2H), 2.18 

(d, J = 1.2 Hz, 3H. 13C NMR (150 MHz, DMSO-d6) δ 153.6, 148.0, 145.6, 133.9, 130.8, 129.2, 128.7, 

127.9, 127.1, 120.8, 120.2 (q, J = 257.4 Hz), 116.0, 105.4, 41.3, 16.2. HRMS (ESI): m/z calc for 

C15H11F3N4O4Na [M+Na]+: 391.0625, found 391.0613. Minor isomer imidazopyrazine 25m: LCMS: 

Rt = 3.78 min, 99 A% @ 254 nm, [M+H]+  = 369.0; 1H NMR (600 MHz, DMSO-d6) δ 8.96 (s, 1H), 8.09 

(d, J = 1.3 Hz, 1H), 7.75 (dd, J = 7.6, 1.7 Hz, 1H), 7.57 (td, J = 7.9, 1.8 Hz, 1H), 7.51 – 7.44 (m, 2H), 

5.63 (s, 2H), 2.36 (d, J = 1.1 Hz, 3H); 13C NMR (150 MHz, DMSO-d6) δ 152.5, 148.2, 146.8, 136.9, 

131.4, 130.6, 128.9, 128.3, 127.7, 120.6, 120.1 (q, J= 256.4 Hz), 114.4, 111.6, 62.5, 20.3. HRMS (ESI): 

m/z calc for C15H11F3N4O4Na [M+Na]+: 391.0625, found 391.0621.

5,6-Dimethyl-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 26a

Imidazole-2-carboxamide 16a (750 mg, 3.89 mmol) was reacted according to general procedure E with

3-bromo-2-butanone (1.5 eq) to yield a yellow solid (477 mg, 67%). LCMS: Rt = 2.57 min, 99 A% @ 

254 nm, [M + H]+ = 209.1. 1H NMR (600 MHz, DMSO-d6) δ 11.55 (s, 1H), 8.82 (s, 1H), 2.32 (q, J = 1.0 
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Hz, 3H), 2.16 (q, J = 1.0 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 152.8, 147.9, 134.6, 124.6, 115.2, 

111.0, 14.7, 12.5. HRMS (ESI): m/z calcd for C16H16N8NaO6 [2M + Na]+, 439.1085; found, 439.1090.

6-Methyl-2-nitro-7-(4-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 26b and 5,6-

dimethyl-2-nitro-8-((4-(trifluoromethoxy)benzyl)oxy)imidazo[1,2-a]pyrazine; 26c

Compound 26a (150 mg, 0.721 mmol) was reacted according to general procedure A with K2CO3 and 1-

(bromomethyl)4-(trifluoromethoxy)benzene (1.2 eq) at rt overnight. The ratio of 26b:26c in the crude 

material was 3:1 (NMR). The crude solid was purified over silica gel by MPLC (Grace Reveleris X2, 0–

7% MeOH in DCM gradient) to yield 26b as a yellow solid (178 mg, 69%) and 25c as a yellow solid (57 

mg, 21%). Major isomer imidazopyrazinone 26b: LCMS: Rt = 3.61 min, 99 A% @ 254 nm, [M + H]+ 

= 383.1. 1H NMR (600 MHz, DMSO-d6) δ 8.93 (s, 1H), 7.38 – 7.31 (m, 4H), 5.37 (s, 2H), 2.43 (q, J = 

1.0 Hz, 3H), 2.23 (q, J = 1.0 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.2, 148.1, 147.4, 136.3, 

133.9, 128.2, 126.3, 121.4, 120.1 (q, J = 256.1 Hz), 115.3, 112.5, 45.7, 14.9, 13.9. HRMS (ESI): m/z 

calcd for C16H14F3N4O4 [M + H]+, 383.0962; found, 383.0958. Minor isomer imidazopyrazine 26c: 

LCMS: Rt = 3.94 min, 99 A% @ 254 nm, [M + H]+ = 383.0. 1H NMR (600 MHz, DMSO-d6) δ 9.03 (s, 

1H), 7.70 – 7.65 (m, 2H), 7.45 – 7.40 (m, 2H), 5.56 (s, 2H), 2.54 (q, J = 0.9 Hz, 3H), 2.40 (q, J = 0.9 Hz, 

3H).13C NMR (150 MHz, DMSO-d6) δ 150.8, 148.5, 148.1, 135.6, 132.8, 130.5, 129.4, 121.1, 120.6, 

120.1 (q, J = 255.5 Hz), 113.2, 66.8, 19.6, 13.7. HRMS (ESI): m/z calcd for C16H14F3N4O4 [M + H]+, 

383.0962; found, 383.0961.

5,6-Dimethyl-7-(4-methylbenzyl)-2-nitroimidazo[1,2-a]pyrazin-8(7H)-one; 26d and 5,6-dimethyl-

8-((4-methylbenzyl)oxy)-2-nitroimidazo[1,2-a]pyrazine; 26e

Compound 24a (65 mg, 0.312 mmol) was reacted according to general procedure A with Cs2CO3 and 4-

methylbenzyl bromide (1.2 eq) with heating (µW 80 °C, 20 min then µW 90 °C, 10 min) followed by 

stirring overnight at rt, work up B. The ratio of 26d:26e in the crude material was 1.5:1 by LC-MS (UV 
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254 nm). The crude was purified over silica gel by MPLC (Biotage Isolera, 0-4% DCM/MeOH) to yield 

26d as a yellow powder (39 mg, 40%) and 26e as a light yellow powder (18 mg, 19%). Major isomer 

imidazopyrazinone 26d: LCMS: Rt = 3.45 min, 99 A% @ 254 nm, [M+H]+  = 313.1. 1H NMR (600 

MHz, DMSO-d6) δ 8.90 (s, 1H), 7.14 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 5.30 (s, 2H), 2.42 (d, 

J = 1.0 Hz, 3H), 2.27 (s, 3H), 2.22 (d, J = 1.0 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.2, 148.1, 

136.4, 133.9, 133.7, 129.3, 126.5, 126.1, 115.2, 112.3, 46.0, 20.6, 14.8, 13.8. HRMS (ESI): m/z calc for 

C16H16N4O3Na [M+Na]+: 335.1115, found 335.1116. Minor isomer imidazopyrazine 26e: Rt = 3.81 

min, 99 A% @ 254 nm, [M+H]+  = 313.1. 1H NMR (600 MHz, DMSO-d6) δ 9.01 (s, 1H), 7.44 – 7.40 

(m, 2H), 7.25 – 7.20 (m, 2H), 5.48 (s, 2H), 2.55 – 2.52 (m, 3H), 2.40 (d, J = 1.0 Hz, 3H), 2.32 (s, 3H). 

13C NMR (150 MHz, DMSO-d6) δ 151.0, 148.4, 137.5, 132.9, 132.8, 129.4, 128.9, 128.7, 120.3, 113.1, 

67.7, 20.8, 19.6, 13.6. HRMS (ESI): m/z calc for C16H16N4O3Na [M+Na]+: 335.1115, found 335.1115.

5,6-Dimethyl-2-nitro-7-(3-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 26f and 

5,6-dimethyl-2-nitro-8-((3-(trifluoromethoxy)benzyl)oxy)imidazo[1,2-a]pyrazine; 26g

Compound 26a (120 mg, 0.576 mmol) was reacted according to general procedure A with Cs2CO3 and 

1-(bromomethyl)-3-(trifluoromethoxy)benzene (1.2 eq) with heating (µW 100 °C) for 10 min. The ratio 

of 26f:26g in the crude material was 1.2:1 by LC-MS (UV 254 nm). The crude material was purified 

over silica gel by MPLC (Biotage Isolera, 0-4% dichloromethane/methanol) to yield 26f as a light brown 

solid (131 mg, 60%) and 26g as a yellow gel (66 mg, 30%). Major isomer imidazopyrazinone 26f: 

LCMS: Rt = 3.56 min, 99 A% @ 254 nm, [M+H]+  = 383.1. 1H NMR (600 MHz, DMSO-d6) δ 8.93 (s, 

1H), 7.51 – 7.43 (m, 1H), 7.29 (s, 1H), 7.28 – 7.21 (m, 2H), 5.39 (s, 2H), 2.43 (d, J = 1.1 Hz, 3H), 2.24 

– 2.20 (m, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.3, 148.6, 148.1, 139.7, 133.9, 130.7, 126.2, 125.1, 

120.0 (q, J = 256.2 Hz), 119.6, 119.0, 115.2, 112.4, 45.8, 14.9, 13.9. HRMS (ESI): m/z calc for 

C32H26F6N8O8Na [2M+Na]+: 787.1678, found 787.1670. Minor isomer imidazopyrazine 26g: LCMS: 

Rt = 3.88 min, 99 A% @ 254 nm, [M+H]+  = 383.1. 1H NMR (600 MHz, DMSO-d6) δ 9.03 (s, 1H), 7.61 
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– 7.51 (m, 3H), 7.40 – 7.35 (m, 1H), 5.58 (s, 2H), 2.54 (s, 3H), 2.39 (s, 3H). 13C NMR (150 MHz, DMSO-

d6) δ 150.7, 148.5, 148.3, 138.8, 132.7, 130.5, 129.4, 127.5, 120.9, 120.9, 120.7, 120.0 (q, J = 256.2 Hz), 

113.2, 66.8, 19.6, 13.7. HRMS (ESI): m/z calc for C16H13F3N4O4Na [M+Na]+: 405.0797, found 405.0781.

5,6-Dimethyl-2-nitro-7-(2-(trifluoromethoxy)benzyl)imidazo[1,2-a]pyrazin-8(7H)-one; 26h and 

5,6-dimethyl-2-nitro-8-((2-(trifluoromethoxy)benzyl)oxy)imidazo[1,2-a]pyrazine; 26i

Compound 26a (120 mg, 0.576 mmol) was reacted according to general procedure A with Cs2CO3 and 

2-(trifluoromethoxy)benzyl bromide (1.2 eq) with heating (µW 100 °C) for 10 min. The ratio of 26h:26i 

in the crude material was 1:2.1 by LC-MS (UV 254 nm). The crude material was purified over silica gel 

by MPLC (Biotage Isolera, 0-4% DCM/MeOH) to yield 26h as a light yellow powder (46 mg, 21%) and 

26i as a light yellow powder (97 mg, 44%). Minor isomer imidazopyrazinone 26h: LCMS: Rt = 3.15 

min, 99 A% @ 254 nm, [M+H]+  = 383.1. 1H NMR (600 MHz, DMSO-d6) δ 8.95 (s, 1H), 7.48 – 7.41 

(m, 2H), 7.35 – 7.29 (m, 1H), 7.06 (dt, J = 8.0, 1.0 Hz, 1H), 5.36 (s, 2H), 2.45 (d, J = 1.0 Hz, 3H), 2.19 

(d, J = 1.0 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 153.1, 148.1, 145.6, 133.8, 129.2, 128.9, 127.9, 

127.1, 126.1, 120.9, 120.3 (q, J = 256.8 Hz), 115.3, 112.6, 41.7, 14.5, 13.9. HRMS (ESI): m/z calc for 

C16H13N4O4F3Na [M+Na]+: 405.0781, found 405.0796. Major isomer imidazopyrazine 26i: LCMS: Rt 

= 3.44 min, 99 A% @ 254 nm, [M+H]+  = 383.1. 1H NMR (600 MHz, DMSO-d6) δ 9.03 (s, 1H), 7.74 

(dd, J = 7.6, 1.8 Hz, 1H), 7.55 (td, J = 7.8, 1.8 Hz, 1H), 7.50 – 7.43 (m, 2H), 5.61 (s, 2H), 2.54 (d, J = 

0.9 Hz, 3H), 2.39 (d, J = 1.0 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 150.6, 148.5, 146.8, 132.7, 

131.3, 130.5, 129.3, 128.5, 127.7, 120.8, 120.6, 120.2 (q, J = 256.8 Hz), 113.2, 62.2, 19.6, 13.6. HRMS 

(ESI): m/z calc for C16H13N4O4F3Na [M+Na]+: 405.0781, found 405.0793.

4-Nitro-1-(2-oxo-2-phenylethyl)-1H-imidazole-2-carboxamide; 27a

Compound 16a (1.20 g, 5.53 mmol), K2CO3 and 2-bromoacetophenone (1.1 eq) were reacted according 

to general procedure A at rt for 1 h. The crude was purified over silica gel by MPLC (Grace Reveleris 
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X2 15–100% EtOAc in pet. spirits gradient) to yield an orange oily-solid (907 mg, 60%). LCMS: Rt = 

3.15 min, 98 A% @ 254 nm, [M + H]+ = 274.9. 1H NMR (600 MHz, DMSO-d6) δ 8.52 (s, 1H), 8.24 (s, 

1H), 8.08 – 8.02 (m, 2H), 7.78 – 7.72 (m, 2H), 7.66 – 7.59 (m, 2H), 6.13 (s, 2H). Minor impurities in 1H 

NMR. 13C NMR (150 MHz, DMSO-d6) δ 191.9, 159.3, 144.5, 137.7, 134.3, 134.0, 129.1, 128.0, 126.4, 

55.7. HRMS (ESI): m/z calcd for C12H10N4NaO4 [M + Na]+, 297.0594; found, 297.0592.

Minimum Inhibition Concentration (MIC) Assay

All compounds were tested for activity against C. difficile bacteria (630, ATCC BAA-1382) and 

representative ESKAPE pathogens S. aureus (MRSA, ATCC 43300), E. coli (FDA control strain, ATCC 

25922), K. pneumoniae (MDR, ATCC 700603), A. baumannii (type strain, ATCC 19606) and P. 

aeruginosa (quality control strain, ATCC 27853) and fungi C. albicans (CLSI reference, ATCC 90028) 

and C. neoformans (H99 type strain, ATCC 208821) using a standard broth microdilution assay 

essentially as previously described.49 MICs for each strain were determined as the lowest concentration 

without visible growth. Variance between replicates was typically within one 2-fold dilution. Median 

MICs are reported with a range given when the median MIC was between two tested concentrations.

M. tuberculosis H37Rv Minimum Inhibition Assays

The potency of the inhibitors was measured by a resazurin reduction microplate assay as previously 

described50,51 with some alterations. M. tuberculosis (H37Rv) was grown in Middlebrook 7H9 broth 

medium supplemented with ADC (Difco Laboratories), 0.5% glycerol, and 0.02% Tyloxapol. Freshly 

seeded cultures were grown at 37 °C for approximately 14 days to mid-exponential phase (OD600 0.4−0.8) 

for use in the inhibition assays. Assay plates (96-well microtiter) were prepared with compound serially 

diluted in 100 µL of 7H9S media (7H9 with 10% ADC, 0.5% glycerol, 0.05% Tween-80 and 1% 

tryptone). Mid-exponential phase culture of M. tuberculosis (OD600 0.4−0.8) was diluted to OD600 0.001 
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in 7H9S media and 100 μL (representing ∼2 x 104 CFU/mL) was added to each well. For normoxic 

conditions, the plates were incubated for 5 days at 37 °C in a humidified incubator prior to the addition 

of 30 μL of a 0.02% resazurin solution and 12.5 μL of 20% Tween-80 to each well. After 24 h incubation 

(37 °C), sample fluorescence was measured on a Fluorostar Omega fluorescent plate reader (BMG) with 

an excitation wavelength of 530 nm and emission read at 590 nm. Percent fluorescence relative to the 

positive control wells (H37Rv without compound) minus the negative control wells (without H37Rv) 

was plotted for the determination of the MIC (≤90% reduction in growth). The assays were performed in 

replicate on independent occasions (n = 3–6). For hypoxic assays the same method was used except assay 

plates were incubated for 5 days at 0.1% oxygen and after addition of the resazurin solution the 

fluorescence was measured after a prolonged incubation time of 48 h.

Antiparasitic Assay: G. lamblia and E. histolytica

Compounds were screened for antiparasitic activity in a 96-well plate using an ATP-bioluminescence 

based assay for cell growth and survival as previously described.49 Briefly, trophozoites of G. lamblia 

(WB line52) and E. histolytica (HM1:IMSS) were axenically maintained in TYI-S-33 medium 

supplemented with penicillin (100 U/mL) and streptomycin (100 μg/mL).53 All experiments were 

performed using trophozoites harvested during the logarithmic phase of growth. Two-fold serial dilutions 

were prepared from compound stocks (10 mM in DMSO) yielding a concentration range of 78 µM–10 

mM. From this dilution plate, 0.5 μL from each well was transferred into 96-well microtitre plates 

followed by addition of 99.5 μL of trophozoites (5000 parasites) to yield a final 8-point concentration 

range spanning 0.39–50 μM. Assay plates were incubated for 24–48 h at 37 °C in the GasPak™ EZ 

Anaerobe Gas Generating Pouch Systems (VWR, West Chester, PA) to maintain anaerobic condition 

throughout the incubation period. Viable cell numbers were determined in triplicate using the CellTiter-

Glo Luminescent Cell Viability Assay.54
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Antiparasitic Assay: T. b. brucei

Compounds were screened for antitrypanosomal activity against T. b. brucei (strain 427, BS427) 

using an established 384-well resazurin viability assay, as previously described.55-57 Briefly, 55 µL of 

HMI-9 media supplemented with 10% FCS containing 1200 cells/mL of logarithmic phase T. b. brucei 

bloodstream parasites were added to a 384-well microtiter plate (BD biosciences, USA) and incubated 

for 24 hrs at 37 °C/5% CO2. Serial compound concentrations were prepared in 100% DMSO and diluted 

1:21 in DMEM media. Five microliters of these dilutions were subsequently added to assay plates to give 

final compound concentrations ranging from a top final assay concentration of 40 or 20 µM, to 4x10-3 

µM or 2x10-3 µM, respectively. Plates were incubated for 48 hrs at 37 °C/5% CO2. Ten microlitres of 

0.49 mM resazurin (Sigma-Aldrich, USA) in HMI-9 media +10% FCS was added to assay plates and 

incubated for a further 2 hrs at 37 °C/5% CO2 followed by 22 hrs at room temperature. Final assay 

concentrations of puromycin (5 μM) and 0.4% DMSO were used as in-plate controls for all experiments. 

Assay plates were read at 535 nm excitation/590 nm emission on an Envision® multiplate reader 

(PerkinElmer, USA). Non-linear sigmoidal dose response curves with no constraints were plotted and 

IC50 values calculated in GraphPad Prism 6. The IC50 value was determined for compounds that exhibited 

a plateau of inhibition (above 90% inhibition at the top two concentrations) and were calculated from 

two independent experiments.

Antiparasitic Assay: Leishmania donovani Intracellular Amastigote 

Compounds were screened for antileishmanial activity in an established DD8 intracellular (THP-1) 

amastigote assay as previously described.57 Briefly, seven day old L. donovani MHOM/IN/80/DD8 

(ATCC50212) culture containing metacyclic promastigotes were added to the 384-well assay plates 

containing the transformed THP-1 cells (ATCC TIB202) at 72 hrs after the initial cell seeding with a 

multiplicity of infection (MOI) of 1:5 (ratio host cells : parasites). Assay plates were incubated 24 hrs at 

37˚C / 5% CO2. Non-internalised parasites were removed by washing 6 times in PBS before the addition 
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of 45 μL RMPI (10% FBS and 25 ng/mL phorbol 12-myristate 13-acetate). Five microliters of 

compounds were added to wells to give final assay concentrations ranging from 80 to 4x10-3 μM. Final 

assay concentrations of 2 μM of amphotericin B and 0.4% DMSO were used as in-plate controls for all 

experiments. Plates were incubated for 96 hr at 37˚C / 5% CO2, fixed with 4% paraformaldehyde and 

stained with SYBR® green and CellMask™ Deep Red plasma membrane dye. Images were acquired on 

an Opera high-content imaging system (PerkinElmer). Healthy host (THP-1) cells were identified based 

on fluorescent staining with CellMask Deep Red to characterize the cytoplasm in which the parasite 

resides and SYBR green to identify both host and parasite nuclei. An infected cell was defined as a host 

cell containing >3 parasites within the cytoplasm boundary. Non-linear sigmoidal dose response curves 

with no constraints were plotted and IC50 values calculated in GraphPad Prism 6. The IC50 value was 

determined for compounds that exhibited a plateau of inhibition (above 90% inhibition at the top two 

concentrations) and were calculated from two independent experiments.

Mammalian Cytotoxicity Assay

Human HEK293 and HepG2 cells were seeded at 3000 and 5000 cells per well in 384-well plates, 

respectively. Cells were cultured in Dulbecco's modified Eagle's medium with 10% FBS for 24 h at 

37 °C, 5% CO2. A dilution series of compounds was added, with the highest concentration of 100 μM. 

The final concentration of DMSO in culture media was 0.5%, which showed no effect on cell growth. 

After 24 h incubation with the compounds, 5 μM resazurin was added into each well and incubated at 

37 °C for 2 h. As a negative control, 1% Triton X-100 was added into the culture media to lyse all of the 

cells. The fluorescence intensity was read using Polarstar Omega with excitation/emission 560/590 nm. 

Data were analyzed with GraphPad Prism 6 software (La Jolla, California USA) to calculate CC50 values.
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Microsome Stability

Metabolic stability was determined using pooled human (HMMC-PL, Lot# PL050B-B, Thermo Fisher 

Scientific USA) and mouse (CD-1) (MCMCPL, Lot#MS033D, Thermo Fisher) liver microsomes. Test 

compound (3 μM, final DMSO concentration 0.2%) and liver microsomes (1 mg/mL) were mixed in 

100 mM potassium phosphate buffer, pH 7.4 preincubated at 37 °C (500 μL volume). The reaction was 

initiated by addition of NADPH solution (cofactor) in 0.1 M potassium phosphate buffer at a final 

NADPH concentration of 1 mM. The reaction was incubated in a shaking incubator at 37 °C, 150 rpm. 

Aliquots (90 μL) from the reaction mixture were withdrawn (t = 0, 10, 30, 60 and 120 min) and quenched 

by adding ice-cold precipitating solution (270 μL) comprising 0.5 μM carbutamide internal standard in 

acetonitrile: methanol: formic acid (1: 1: 0.001 v/v). Reaction samples were incubated at 4 °C for 30 min, 

centrifuged at 14,000 × g for 8 min and the clear supernatant was analyzed by LC/MS/MS. The 

percentage of compound remaining at different times was calculated by comparing the peak area ratio of 

the parent compound (compound peak area/internal standard peak area) at the start of incubation 

(t = 0 min sample). All samples were tested in triplicate except for the control samples (without 

NADPH), matrix blank and verapamil standard (time points = 0, 10 and 30 min). LC/MS/MS parameters 

are detailed in the Supporting Information Table S4.

Plasma Stability

Plasma stability studies were performed using human (HMPLNAHP, Lot#BRH1324758, 

BioReclamationIVT) and mouse (CD-1) plasma (MSEPLNAHP, Lot#MSE261215, 

BioReclamationIVT) at five different time points. A solution of plasma and phosphate buffer saline 

(PBS), pH 7.4 (50:50; v/v) were pre-heated at 37 °C for 30 min (240 μL volume). The reaction was 

initiated by addition of the test compounds (3 μM, final DMSO concentration 1%) and the reaction was 

incubated in a shaking incubator at 37 °C, 150 rpm. Aliquots (40 μL) from the reaction mixture were 
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withdrawn and processed as described for microsome stability assay. All samples were tested in triplicate 

and eucatropine was used as a positive control.

Plasma Protein Binding

Plasma Protein Binding (PPB) was performed using an Ultrafiltration method.58,59 Fresh frozen human 

plasma was pooled from O Positive (Product Number 2799882) and O Negative (Product number 

5398256) blood from the R & D division of the Australian Red Cross Blood Services (Brisbane). Test 

compounds (5 μM) were incubated in 100% human plasma at 37 °C for 30 min (1 mL volume). For 

unfiltered samples, an aliquot (50 μL) was removed, diluted with PBS (50 μL) and quenched with ice-

cold precipitating solution comprising 0.5 μM carbutamide MS internal standard in acetonitrile: 

methanol: formic acid (1: 1: 0.001). Samples were incubated at 4 °C for 30 min, then centrifuged at 

14,000 × g for 8 min before the clear supernatant was transferred to a vial for LC/MS/MS analysis. For 

filtered samples, the plasma sample (250 μL) was filtered using Amicon Ultra-0.5 Centrifugal Filter 

Devices 30K NMWL at 14,000 × g for 7 min and then an aliquot (50 μL) was processed as described for 

unfiltered samples. The fraction of unbound compound was calculated by determining the concentration 

of the filtered sample and the concentration of unfiltered sample. All samples were tested in triplicate 

with sulfamethoxazole as a control.

Caco-2 Permeability Assay

This study was conducted by WuXi AppTec Co. Ltd. (Shanghai). Caco-2 cells from ATCC were seeded 

onto polystyrene membranes in 96-well insert plate at 1 × 105 cells/cm2 until the formation of confluent 

cell monolayer at 21st‒28th day. Transport buffer used was HBSS with 10 mM HEPES, pH 7.4. 

Compounds (2 µM) were tested bidirectionally in duplicate. The plate was incubated for 2 h at 37 °C and 

5% CO2 at saturated humidity without shaking. All samples were then mixed with acetonitrile containing 

internal standard, centrifuged at 4000 rpm for 20 min and the clear supernatant was diluted 1:1 with water 
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prior to LC/MS/MS analysis. Test compounds and controls (fenoterol, propranolol and digoxin) in 

starting solution, donor solution, and receiver solution were quantified using peak area ratio of 

analyte/internal standard. To confirm the Caco-2 cell monolayer integrity after the transport assay, lucifer 

yellow rejection assay was performed. The apparent permeability coefficient Papp (cm/s) was calculated 

using the equation: Papp = (dCr/dt) × Vr / (A × C0) where dCr/dt is the cumulative concentration of 

compound in the receiver chamber as a function of time (µM/s); Vr is the solution volume in the receiver 

chamber (0.075 mL on the apical side, 0.25 mL on the basolateral side); A is the surface area for the 

transport, i.e. 0.0804 cm2 for the area of the monolayer; C0 is the initial concentration in the donor 

chamber (µM). The efflux ratio was calculated using the equation: Efflux Ratio = Papp (BA) / Papp (AB). 

Percent recovery was calculated using the equation: % Recovery = 100 x [(Vr × Cr) + (Vd × Cd)] / (Vd × 

C0) where Vd is the volume in the donor chambers (0.075 mL on the apical side, 0.25 mL on the 

basolateral side); Cd and Cr are the final concentrations of transport compound in donor and receiver 

chambers, respectively.

Solubility Determination

Stock compound solution (20 mM in DMSO) was aliquoted into water and phosphate buffer saline 

(PBS), pH 7.4 and 0.1 M HCl (pH 1) respectively to a final concentration of 200 μM, 1% DMSO. After 

24 hours of incubation in a shaking incubator at room temperature, 130 rpm, solutions were filtered using 

centrifuge filter tubes (Corning® Costar® Spin-X® centrifuge tube filters, CLS8169) at 8,000 rpm for 1 

min. The filtrates were further diluted with acetonitrile (1:1, v/v) prior to analysis using LC/UV as 

detailed in the general experimental. The solubility was determined based on the peak area at UV 

absorbance 254 nm, with reference to the standard calibration curve prepared from 20 mM DMSO stock. 

Compounds and standards (caffeine and pretomanid) were prepared in duplicate and each sample was 

analyzed in duplicate by LC/UV.
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Ancillary Information

Supporting information

1H and 13C NMR Spectra

2D NMR and crystal structure data (Figure S1, Tables S1-S3) for 17a

LC/MS/MS detection and analysis parameters for plasma protein binding and metabolic stability Table 

S4

Supplementary biological data Tables S5-S8

Solubility data Table S9

Molecular formula strings (CSV)
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