225 research outputs found

    A New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison With Interactive Stratospheric Aerosol Models

    Get PDF
    Idealized models or emulators of volcanic aerosol forcing have been widely used to reconstruct the spatiotemporal evolution of past volcanic forcing. However, existing models, including the most recently developed Easy Volcanic Aerosol (EVA; Toohey et al., doi: 10.5194/gmd‐2016‐83), (i) do not account for the height of injection of volcanic SO urn:x-wiley:jgrd:media:jgrd55987:jgrd55987-math-0001; (ii) prescribe a vertical structure for the forcing; and (iii) are often calibrated against a single eruption. We present a new idealized model, EVA_H, that addresses these limitations. Compared to EVA, EVA_H makes predictions of the global mean stratospheric aerosol optical depth that are (i) similar for the 1979–1998 period characterized by the large and high‐altitude tropical SO urn:x-wiley:jgrd:media:jgrd55987:jgrd55987-math-0002 injections of El Chichón (1982) and Mount Pinatubo (1991); (ii) significantly improved for the 1998–2015 period characterized by smaller eruptions with a large variety of injection latitudes and heights. Compared to EVA, the sensitivity of volcanic forcing to injection latitude and height in EVA_H is much more consistent with results from climate models that include interactive aerosol chemistry and microphysics, even though EVA_H remains less sensitive to eruption latitude than the latter models. We apply EVA_H to investigate potential biases and uncertainties in EVA‐based volcanic forcing data sets from phase 6 of the Coupled Model Intercomparison Project (CMIP6). EVA and EVA_H forcing reconstructions do not significantly differ for tropical high‐altitude volcanic injections. However, for high‐latitude or low‐altitude injections, our reconstructed forcing is significantly lower. This suggests that volcanic forcing in CMIP6 last millenium experiments may be overestimated for such eruptions

    A new volcanic stratospheric sulfate aerosol forcing emulator (EVA_H): Comparison with interactive stratospheric aerosol models.

    Get PDF
    Idealized models or emulators of volcanic aerosol forcing have been widely used to reconstruct the spatio‐temporal evolution of past volcanic forcing. However, existing models, including the most recently developed Easy Volcanic Aerosol (EVA, Toohey et al. (2016): i) do not account for the height of injection of volcanic SO2; ii) prescribe a vertical structure for the forcing; and iii) are \NEW{often} calibrated against a single eruption. We present a new idealized model, EVA_H, that addresses these limitations. Compared to EVA, EVA_H makes predictions of the global mean stratospheric aerosol optical depth that are: i) similar for the 1979‐1998 period characterized by the large and high‐altitude tropical SO2 injections of El Chichón (1982) and Mt. Pinatubo (1991); ii) significantly improved for the 1998‐2015 period characterized by smaller eruptions with a large variety of injection latitudes and heights. Compared to EVA, the sensitivity of volcanic forcing to injection latitude and height in EVA_H is much more consistent with results from climate models that include interactive aerosol chemistry and microphysics, even though EVA_H remain less sensitive to eruption latitude than the latter models. We apply EVA_H to investigate potential biases and uncertainties in EVA‐based volcanic forcing datasets from phase 6 of the Coupled Model Intercomparison Project (CMIP6). EVA and EVA_H forcing reconstructions do not significantly differ for tropical high‐altitude volcanic injections. However, for high‐latitude or low altitude injections, our reconstructed forcing is significantly lower. This suggests that volcanic forcing in CMIP6 last millenium experiments may be overestimated for such eruptions.Includes NERC

    Rapid detection of 2-hydroxyglutarate in frozen sections of IDH mutant tumors by MALDI-TOF mass spectrometry

    Get PDF
    All isocitrate dehydrogenase (IDH) mutant solid neoplasms exhibit highly elevated levels of D-2-hydroxyglutarate (D-2HG). Detection of 2HG in tumor tissues currently is performed by gas or liquid chromatography-mass spectrometry (GC- or LC-MS) or biochemical detection. While these methods are highly accurate, a considerable amount of time for tissue preparation and a relatively high amount of tissue is required for testing. We here present a rapid approach to detect 2HG in brain tumor tissue based on matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF). We analyzed 26 brain tumor samples with known IDH1 or IDH2 mutation and compared readouts to those from 28 brain tumor samples of wildtype IDH status. IDH mutant samples exhibited a clear positive signal for 2HG which was not observed in any of the IDH wildtype tumors. Our analytical pipeline allowed for 2HG detection in less than 5 min. Data were validated by determining 2HG levels in all tissues with a biochemical assay. In conclusion, we developed a protocol for rapid detection of 2HG levels and illustrate the possibility to use MALDI-TOF for the detection of metabolites on frozen tissue sections in a diagnostic setting

    Video review of family medicine resident clinical encounters: a tool for building emotional intelligence

    Get PDF
    Video Review (VR) is a well established educational tool for developing the practice of patient-centered care in family medicine residents. There are a number of behaviorally-based checklists that can be use in both live observation as well as VR of clinical encounters to identify and promote behaviors associated with patient-centered care, most of which also overlap with behaviors associated with Emotional Intelligence (EI). We propose a VR that is structured less on a seek-and-find of clinician behaviors and more as a self-reflective exercise of how the clinician presents in the room alongside how they were feeling during that encounter. We believe that this exercise promotes the first two skills of EI (self-awareness and self-management) and then provides a foundation on which to build the second pair of skills (social awareness and relationship management). This perspective paper offers guidance, including stepwise instruction, on how to facilitate such a VR curriculum

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    The Concussion Recognition Tool 5th Edition (CRT5): Background and rationale

    Get PDF
    The Concussion Recognition Tool 5 (CRT5) is the most recent revision of the Pocket Sport Concussion Assessment Tool 2 that was initially introduced by the Concussion in Sport Group in 2005. The CRT5 is designed to assist non-medically trained individuals to recognise the signs and symptoms of possible sport-related concussion and provides guidance for removing an athlete from play/sport and to seek medical attention. This paper presents the development of the CRT5 and highlights the differences between the CRT5 and prior versions of the instrument

    Proceedings from the Ice Hockey Summit III: Action on Concussion

    Get PDF
    The Ice Hockey Summit III provided updated scientific evidence on concussions in hockey to inform these five objectives: 1) describe sport-related concussion (SRC) epidemiology, 2) classify prevention strategies, 3) define objective, diagnostic tests, 4) identify treatment, and 5) integrate science and clinical care into prioritized action plans and policy. Our action plan evolved from 40 scientific presentations. The 155 attendees (physicians, athletic trainers, physical therapists, nurses, neuropsychologists, scientists, engineers, coaches, and officials) voted to prioritize these action items in the final Summit session. 1) Establish a national and international hockey data base for SRC at all levels, 2) eliminate body checking in Bantam youth hockey games, 3) expand a behavior modification program (Fair Play) to all youth hockey levels, 4) enforce game ejection penalties for fighting in Junior A and professional hockey leagues, 5) establish objective tests to diagnose concussion at point of care (POC), and 6) mandate baseline testing to improve concussion diagnosis for all age groups. Expedient implementation of the Summit III prioritized action items is necessary to reduce the risk, severity, and consequences of concussion in the sport of ice hockey
    corecore