834 research outputs found

    Particle Size Distribution in Aluminum Manufacturing Facilities.

    Get PDF
    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities

    A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition

    Get PDF
    The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni–FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni–FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni–FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections

    Ischemic Heart Disease Incidence in Relation to Fine versus Total Particulate Matter Exposure in a U.S. Aluminum Industry Cohort.

    Get PDF
    Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 μm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11-2.60) and 1.48 (95% CI: 1.02-2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89-1.77) and 1.25 (95% CI: 0.88-1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5

    Incident Ischemic Heart Disease After Long-Term Occupational Exposure to Fine Particulate Matter: Accounting for 2 Forms of Survivor Bias.

    Get PDF
    Little is known about the heart disease risks associated with occupational, rather than traffic-related, exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5). We examined long-term exposure to PM2.5 in cohorts of aluminum smelters and fabrication workers in the United States who were followed for incident ischemic heart disease from 1998 to 2012, and we addressed 2 forms of survivor bias. Left truncation bias was addressed by restricting analyses to the subcohort hired after the start of follow up. Healthy worker survivor bias, which is characterized by time-varying confounding that is affected by prior exposure, was documented only in the smelters and required the use of marginal structural Cox models. When comparing always-exposed participants above the 10th percentile of annual exposure with those below, the hazard ratios were 1.67 (95% confidence interval (CI): 1.11, 2.52) and 3.95 (95% CI: 0.87, 18.00) in the full and restricted subcohorts of smelter workers, respectively. In the fabrication stratum, hazard ratios based on conditional Cox models were 0.98 (95% CI: 0.94, 1.02) and 1.17 (95% CI: 1.00, 1.37) per 1 mg/m(3)-year in the full and restricted subcohorts, respectively. Long-term exposure to occupational PM2.5 was associated with a higher risk of ischemic heart disease among aluminum manufacturing workers, particularly in smelters, after adjustment for survivor bias

    The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

    Get PDF
    Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination

    Massive Electrodynamics and Magnetic Monopoles

    Get PDF
    Including torsion in the geometric framework of the Weyl-Dirac theory we build up an action integral, and obtain from it a gauge covariant (in the Weyl sense) general relativistic massive electrodynamics. Photons having an arbitrary mass, electric, and magnetic currents (Dirac's monopole) coexist within this theory. Assuming that the space-time is torsionless, taking the photons mass zero, and turning to the Einstein gauge we obtain Maxwell's electrodynamics.Comment: LaTex File, 9 pages, no figure

    A method for the three-dimensional reconstruction of Neurobiotin(TM)-filled neurons and the location of their synaptic inputs

    Get PDF
    Here, we describe a robust method for mapping the number and type of neuro-chemically distinct synaptic inputs that a single reconstructed neuron receives. We have used individual hypoglossal motor neurons filled with Neurobiotin by semi-loose seal electroporation in thick brainstem slices. These filled motor neurons were then processed for excitatory and inhibitory synaptic inputs, using immunohistochemical-labeling procedures. For excitatory synapses, we used anti-VGLUT2 to locate glutamatergic pre-synaptic terminals and anti-PSD-95 to locate post-synaptic specializations on and within the surface of these filled motor neurons. For inhibitory synapses, we used anti-VGAT to locate GABAergic pre-synaptic terminals and anti-GABA-A receptor subunit a1 to locate the post-synaptic domain. The Neurobiotin-filled and immuno-labeled motor neuron was then processed for optical sectioning using confocal microscopy. The morphology of the motor neuron including its dendritic tree and the distribution of excitatory and inhibitory synapses were then determined by three-dimensional reconstruction using IMARIS software (Bitplane). Using surface rendering, fluorescence thresholding, and masking of unwanted immuno-labeling, tools found in IMARIS, we were able to obtain an accurate 3D structure of an individual neuron including the number and location of its glutamatergic and GABAergic synaptic inputs. The power of this method allows for a rapid morphological confirmation of the post-synaptic responses recorded by patch-clamp prior to Neurobiotin filling. Finally, we show that this method can be adapted to super-resolution microscopy techniques, which will enhance its applicability to the study of neural circuits at the level of synapses

    Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat

    Get PDF
    Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB) disease of wheat. Z. tritici is an apoplastic fungal pathogen, which does not penetrate plant cells at any stage of infection, and has a long initial period of symptomless leaf colonisation. During this phase it is unclear to what extent the fungus can access host plant nutrients or communicate with plant cells. Several important primary and secondary metabolite pathways in fungi are regulated by the post-translational activator phosphopantetheinyl transferase (Ppt) which provides an essential co-factor for lysine biosynthesis and the activities of non-ribosomal peptide synthases (NRPS) and polyketide synthases (PKS). To investigate the relative importance of lysine biosynthesis, NRPS-based siderophore production and PKS-based DHN melanin biosynthesis, we generated deletion mutants of ZtPpt. The ?ZtPpt strains were auxotrophic for lysine and iron, non-melanised and non-pathogenic on wheat. Deletion of the three target genes likely affected by ZtPpt loss of function (Aar- lysine; Nrps1-siderophore and Pks1- melanin), highlighted that lysine auxotrophy was the main contributing factor for loss of virulence, with no reduction caused by loss of siderophore production or melanisation. This reveals Ppt, and the lysine biosynthesis pathway, as potential targets for fungicides effective against Z. tritici

    How High? Trends in Cannabis Use Prior to First Admission to Inpatient Psychiatry in Ontario, Canada, between 2007 and 2017

    Get PDF
    Objectives: To examine the trends in cannabis use within 30 days of first admission to inpatient psychiatry in Ontario, Canada, between 2007 and 2017, and the characteristics of persons reporting cannabis use. Methods: A retrospective cross-sectional analysis was conducted for first-time admissions to nonforensic inpatient psychiatric beds in Ontario, Canada, between January 1, 2007, and December 31, 2017, using data from the Ontario Mental Health Reporting System (N = 81,809). Results: Across all years, 20.1% of patients reported cannabis use within 30 days of first admission. Use increased from 16.7% in 2007 to 25.9% in 2017, and the proportion with cannabis use disorders increased from 3.8% to 6.0%. In 2017, 47.9% of patients aged 18 to 24 and 39.2% aged 25 to 34 used cannabis, representing absolute increases of 8.3% and 10.7%, respectively. Increases in cannabis use were found across almost all diagnostic groups, with the largest increases among patients with personality disorders (15% increase), schizophrenia or other psychotic disorders (14% increase), and substance use disorders (14% increase). A number of demographic and clinical factors were significantly associated with cannabis use, including interactions between schizophrenia and gender (area under the curve = 0.88). Conclusions: As medical cannabis policies in Canada have evolved, cannabis use reported prior to first admission to inpatient psychiatry has increased. The findings of this study establish a baseline for evaluating the impact of changes in cannabis-related policies in Ontario on cannabis use prior to admission to inpatient psychiatry
    corecore