138 research outputs found

    Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression

    Get PDF
    Innate immune cells are active at the front line of host defense against pathogens and now appear to play a range of roles under non-infectious conditions as well, most notably in cancer. Establishing the balance of innate immune responses is critical for the “flavor” of these responses and subsequent adaptive immunity and can be either “good or bad” in controlling cancer progression. The importance of innate NK cells in tumor immune responses has already been extensively studied over the last few decades, but more recently several relatively mono- or oligo-clonal [i.e., (semi-) invariant] innate T cell subsets received substantial interest in tumor immunology including invariant natural killer T (iNKT), γδ-T and mucosal associated invariant T (MAIT) cells. These subsets produce high levels of various pro- and/or anti-inflammatory cytokines/chemokines reflecting their capacity to suppress or stimulate immune responses. Survival of patients with cancer has been linked to the frequencies and activation status of NK, iNKT, and γδ-T cells. It has become clear that NK, iNKT, γδ-T as well as MAIT cells all have physiological roles in anti-tumor responses, which emphasize their possible relevance for tumor immunotherapy. A variety of clinical trials has focused on manipulating NK, iNKT, and γδ-T cell functions as a cancer immunotherapeutic approach demonstrating their safety and potential for achieving beneficial therapeutic effects, while the exploration of MAIT cell related therapies is still in its infancy. Current issues limiting the full therapeutic potential of these innate cell subsets appear to be related to defects and suppressive properties of these subsets that, with the right stimulus, might be reversed. In general, how innate lymphocytes are activated appears to control their subsequent abilities and consequent impact on adaptive immunity. Controlling these potent regulators and mediators of the immune system should enable their protective roles to dominate and their deleterious potential (in the specific context of cancer) to be mitigated

    Paucity of CD4+ Natural Killer T (NKT) Lymphocytes in Sooty Mangabeys Is Associated with Lack of NKT Cell Depletion after SIV Infection

    Get PDF
    Lack of chronic immune activation in the presence of persistent viremia is a key feature that distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection in natural hosts from pathogenic SIV and HIV infection. To elucidate novel mechanisms downmodulating immune activation in natural hosts of SIV infection, we investigated natural killer T (NKT) lymphocytes in sooty mangabeys. NKT lymphocytes are a potent immunoregulatory arm of the innate immune system that recognize glycolipid antigens presented on the nonpolymorphic MHC-class I-like CD1d molecules. In a cross-sectional analysis of 50 SIV-negative and 50 naturally SIV-infected sooty mangabeys, ligand α-galactosylceramide loaded CD1d tetramers co-staining with Vα24-positive invariant NKT lymphocytes were detected at frequencies ≥0.002% of circulating T lymphocytes in approximately half of the animals. In contrast to published reports in Asian macaques, sooty mangabey NKT lymphocytes consisted of CD8+ and CD4/CD8 double-negative T lymphocytes that were CXCR3-positive and CCR5-negative suggesting that they trafficked to sites of inflammation without being susceptible to SIV infection. Consistent with these findings, there was no difference in the frequency or phenotype of NKT lymphocytes between SIV-negative and SIV-infected sooty mangabeys. On stimulation with α-galactosylceramide loaded on human CD1d molecules, sooty mangabey NKT lymphocytes underwent degranulation and secreted IFN-γ, TNF-α, IL-2, IL-13, and IL-10, indicating the presence of both effector and immunoregulatory functional capabilities. The unique absence of CD4+ NKT lymphocytes in sooty mangabeys, combined with their IL-10 cytokine-secreting ability and preservation following SIV infection, raises the possibility that NKT lymphocytes might play a role in downmodulating immune activation in SIV-infected sooty mangabeys

    Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma

    Get PDF
    Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches

    A Biologic-Device Combination Product Delivering Tumor-Derived Antigens Elicits Immunogenic Cell Death-Associated Immune Responses Against Glioblastoma

    Get PDF
    Background IGV-001 is a personalized, autologous cancer cell-based immunotherapy conceived to deliver a tumor-derived antigenic payload in the context of immunostimulatory signals to patients with glioblastoma (GBM). IGV-001 consists of patient-derived GBM cells treated with an antisense oligodeoxynucleotide against insulin-like growth factor 1 receptor (IGF1R) and placed in proprietary biodiffusion chambers (BDCs). The BDCs are then exposed to 5–6 Gy radiation and implanted at abdominal sites for ~48 hours. IGV-001 has previously been shown to be generally safe with promising clinical activity in newly diagnosed GBM patients. Methods Mouse (m) or human (h) variants of IGV-001 were prepared using GL261 mouse GBM cells or human GBM cells, respectively. BDCs containing vehicle or mIGV-001 were implanted in the flanks of C57BL/6 albino female mice in preventative and therapeutic experiments, optionally in combination with a programmed cell death 1 (PD-1) blocker. Bioactivity of the general approach was also measured against hepatocellular carcinoma Hepa 1–6 cells. Mice were followed for the growth of subsequently implanted or pre-existing tumors and survival. Draining lymph nodes from mice receiving mIGV-001 were immunophenotyped. mIGV-001 and hIGV-001 were analyzed for extracellular ATP and high mobility group box 1 (HMGB1) as indicators of immunogenic cell death (ICD), along with flow cytometric analysis of viability, surface calreticulin, and reactive oxygen species. Stress and cell death-related pathways were analyzed by immunoblotting. Results IGV-001 causes oxidative and endoplasmic reticulum stress in GL261 cells, resulting in a cytotoxic response that enables the release of antigenic material and immunostimulatory, ICD-associated molecules including ATP and HMGB1 from BDCs. Immunophenotyping confirmed that IGV-001 increases the percentage of dendritic cells, as well as effector, and effector memory T cells in BDC-draining lymph nodes. Consistent with these observations, preventative IGV-001 limited tumor progression and extended overall survival in mice intracranially challenged with GL261 cells, a benefit that was associated with an increase in tumor-specific T cells with effector features. Similar findings were obtained in the Hepa 1–6 model. Moreover, therapeutically administered IGV-001 combined with PD-1 delayed progression in GBM-bearing mice. Conclusions These results support treatment with IGV-001 to induce clinically relevant ICD-driven anticancer immune responses in patients with GBM

    Control of CD1d-restricted antigen presentation and inflammation by sphingomyelin.

    Get PDF
    Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity

    Swimming against the tide: A case study of an integrated social studies department

    Get PDF
    A recent trend in developed countries’ school curricula has been the transition from disciplinary to generic forms of knowledge, resulting in an emphasis on interdisciplinary organisation and more active forms of learning. Subject specialists are increasingly expected to demonstrate how their subject interconnects and equips pupils with key life skills. Such a change requires a major cultural shift and has been controversial, particularly in Scotland where Curriculum for Excellence, the latest curriculum reform, has seen this debate re-emerge. A detailed empirical case study of one secondary school Social Studies department that has already negotiated these shifts is presented. The case study provides insights into how school and department structures and cultures conducive to a more integrated approach have been developed. Leadership, increased opportunities for teachers to exercise greater autonomy in their work, sources of impetus and support for innovation, and the co-construction of meaning through dialogue are important themes in this process. This case study connects with current policy and provides an insight into strategies that other schools might employ when seeking to embed integrative practices. The department is identified as a significant locus for innovation and one which appears to challenge the norm
    • …
    corecore