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Innate immune cells are active at the front line of host defense against pathogens and

now appear to play a range of roles under non-infectious conditions as well, most

notably in cancer. Establishing the balance of innate immune responses is critical for the

“flavor” of these responses and subsequent adaptive immunity and can be either “good

or bad” in controlling cancer progression. The importance of innate NK cells in tumor

immune responses has already been extensively studied over the last few decades, but

more recently several relatively mono- or oligo-clonal [i.e., (semi-) invariant] innate T cell

subsets received substantial interest in tumor immunology including invariant natural killer

T (iNKT), γδ-T and mucosal associated invariant T (MAIT) cells. These subsets produce

high levels of various pro- and/or anti-inflammatory cytokines/chemokines reflecting their

capacity to suppress or stimulate immune responses. Survival of patients with cancer

has been linked to the frequencies and activation status of NK, iNKT, and γδ-T cells.

It has become clear that NK, iNKT, γδ-T as well as MAIT cells all have physiological

roles in anti-tumor responses, which emphasize their possible relevance for tumor

immunotherapy. A variety of clinical trials has focused on manipulating NK, iNKT, and

γδ-T cell functions as a cancer immunotherapeutic approach demonstrating their safety

and potential for achieving beneficial therapeutic effects, while the exploration of MAIT cell

related therapies is still in its infancy. Current issues limiting the full therapeutic potential

of these innate cell subsets appear to be related to defects and suppressive properties

of these subsets that, with the right stimulus, might be reversed. In general, how innate

lymphocytes are activated appears to control their subsequent abilities and consequent

impact on adaptive immunity. Controlling these potent regulators and mediators of the

immune system should enable their protective roles to dominate and their deleterious

potential (in the specific context of cancer) to be mitigated.
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INTRODUCTION

The importance of the immune system in tumor control and
development has been extensively studied and it has been shown
that different elements of the innate and adaptive immune
system can exhibit anti-tumor activity. Adaptive immune cells
are antigen-specific and have enhanced responses to subsequent
antigen exposure. Innate-like or semi-invariant T cell subsets
can recruit adaptive responses and thereby support eradication
of tumor cells. It has become more and more apparent that
besides conventional B and T cells and classical NK lymphocytes,
other conserved innate T cells, such as natural killer T cells
(NKT), γδ T cells and mucosa associated invariant (MAIT)
cells, are of great importance in controlling tumor growth.
Compared with conventional T cells, these innate T cell subsets
are characterized by a limited (γδT cells) or even (semi)-invariant
(iNKT cell populations and MAIT cells) T cell receptor (TCR)
repertoire and can have a dual role in tumor immunity. On
one hand, they can stimulate or even directly mediate anti-
tumor responses, but on the other hand their regulatory functions
may hamper tumor eradication. A deeper understanding of
the roles of classical NK cells and these innate T cell
subsets in tumor immune biology, has led to new therapeutic
options for cancer, whereby manipulation of these invariant
subsets has already shown early signs of promising anti-tumor
efficacy.

In this Review, we will briefly introduce and then outline
our current understanding of the functions and potential of the
classical innate NK cells and several semi-invariant subsets of
innate immune T cells, and highlight their role in controlling
anti-tumor immune responses as well as their therapeutic
potential.

INNATE LYMPHOCYTE SUBSETS IN
NATURAL AND THERAPEUTIC
ANTI-TUMOR IMMUNITY

NK Cells
Natural killer cells (NK) comprise a classical innate lymphoid
cell subset that plays an important role in the defense against
infections and cancer (1). NK possess potent cytolytic activity
to rapidly kill targeted cells (e.g., virally infected or malignant)
and secrete various effector cytokines and chemokines like IFNγ,
TNFα, GM-CSF, MIP-1α (CCL3), and RANTES (CCL5) (2, 3)
(Figure 1). Because of this variety in secreted cytokines, NK
activity is also important for proper function of other innate
immune subsets such as DCs and macrophages (4, 5). But also in
adaptive immune responses, such as cytokine secretion of T and
B cells, NK cells seem to have an important contribution (6–9)
and therefore NK activation can support tumor specific immune
responses.

NK activation is based on the balance between inhibitory
and activating signals from various receptors based on “missing-
self ” and “induced-self ” ligand interactions. Most important
activating receptors are the natural cytotoxicity receptors (NCRs)
NKp46, NKp30, NKp44, the C-type lectin NKG2D, the FcR

CD16 and some killer cell immunoglobulin-like receptors (KIRs),
while the inhibitory receptors include CD94/NKG2A/B and
KIR-2DL and KIR-3DL (10). The feature of “missing-self ”
recognition is based on the situation in which expression of
NK-inhibitory MHC-I molecules in the steady state dominates
over the expression of NK activating ligands, thereby leaving NK
inactive. In contrast, the increased expression of “induced-self ”
ligands on malignant cells in combination with reduced levels of
MHC-I, leads to strongNK triggering and the induction of potent
cytolytic activity.

The finding that MHC-I deficient syngeneic tumors were
selectively rejected by NK and that the detection of the absence
of MHC-I was mediated via inhibitory receptors on NK (10–13)
has led to the discovery of multiple indications in which NK
are involved in tumor eradication. Different mouse studies using
transplanted syngeneic tumor cells showed that either genetic
or antibody mediated NK depletion led to increased tumor
growth and higher metastasis rates (14–17). Tumor outgrowth
could be inhibited through addition of various cytokines that
enhance NK activity. Models using methylcholanthrene (MCA)
for chemical induction of tumors in combination with NK
depletion demonstrated a role for NK, much like iNKT, in
immune surveillance at early stages of tumor development (18).
Mice deficient for important NK effector molecules such as
perforin, IFNγ and the downstream signaling molecule of the
IFNγ receptor, STAT1, developed tumors in higher frequencies
thanWTmice (1, 19). More sophisticatedmodels using RAG2/γc
deficient mice, which lack all lymphocytes including NK, iNKT,
γδ T, classical CD4+ and CD8+ αβ T cells and B cells, showed a
higher incidence of tumor growth compared to RAG2 deficient
mice alone (which lack αβ T cells and B cells) demonstrating
that indeed NK cells are in part responsible for inhibiting tumor
growth (20). However, caution is called for the interpretation
of these data since these models did not exclusively eliminate
NK.

Also in human tumors correlative analyses have indicated a
role for NK in tumor elimination. In cancer patients different
NK deficiencies and dysfunctionalities have been observed
(1, 2, 21–24) and an 11 year follow-up study highlighted that NK
function can be a good indicator for cancer development and
progression (25). In addition, multiple groups have reported that
high levels of tumor infiltrating NK cells (TINKs) represents a
favorable outcome for patients with different types of carcinomas
and therefore NK cell infiltration appears to be a positive
prognostic marker which may also respond to IL-12 (26–28).

Tumors can develop different strategies to evade NKmediated
lysis (29) (Figure 1B). For example in acute myeloid leukemia,
leukemic cells could induce loss or decrease of NCR expression
on NK (30, 31) and this phenotype was correlated with a
decreased killing capacity (31). Another mechanism by which
tumors evade immune surveillance by NK is upregulation of
classical and non-classical MHC-I molecules that reduce NK
activity by delivery of inhibitory signals (32–34) (Figure 1B).
Also specific manipulation of NKG2D signaling has been
observed in tumors and can explain why in some cases the
presence of NKG2D ligands is not sufficient for tumor clearance,
but rather promotes tumor growth through NK cell immune
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FIGURE 1 | The good and bad of (semi invariant) innate cells in cancer. (A) Overview of anti-tumor responses of NK, iNKT, γδ, and MAIT cells. Activated iNKT can

directly kill tumor cells and promote DC triggering which is marked by up regulation of co-stimulatory molecules and enhanced cross-presentation capacities of DCs.

iNKT can also directly promote effector T cell activation and differentiation and stimulate γδ mediated anti-tumor responses by secretion of different cytokines.

Indirectly, iNKT also support activation of NK cells via IL-12 release of DCs, thereby enhancing anti-tumor effector functions. Expression of MICA/B and ULBP proteins

on tumor cells induces activation of both γδ T and NK cells. As a result γδ T cells and NK release different pro-inflammatory cytokines for immune support and are also

capable of directly killing malignant cells. Loss of expression of MHC-I molecules serves as another NK activating trigger, leading to perforin release and tumor cell

eradication. As well as NK, iNKT, and γδ T cells, tumor infiltrating MAIT cells could also secrete different pro-inflammatory cytokines and potentially kill cancerous cells.

(B) Potential tumor-promoting functions of NK, iNKT, γδ, and MAIT cells. Tumor cells possess different mechanisms to escape/manipulate NK cells, leaving NK unable

to lyse malignant cells. NK also secrete immune suppressive and angiogenesis stimulating cytokines, which promote tumor growth. As well as functional defects of

iNKT, which are marked by decreased IFNγ/IL-4 ratio, cancer cells can also skew iNKT function via secretion of lysophosphatidylcholine (LPC), resulting in IL-13

production by iNKT. This induces production of immuno-suppressive cytokines by MDSC. Also release of IL-17 can promote tumor growth. γδ and MAIT cells and a

minor population of NKT cells can also release IL-17, which can inhibit Th1-type responses.

subversion. Normally expression of NKG2D ligands such as the
MHC class I chain-related molecules (MIC) A/B and members
of the UL-16 binding protein (ULBP) family leads to activation
on NK and in patients with colorectal carcinoma expression of
MICA even correlates with good prognosis (35). However, tumor
cells can release soluble forms of NKG2D ligands and elevated
levels of MICA/B and ULBP2 have been detected in sera of
patients with various epithelial and hematopoietic malignancies
(36–41) (Figure 1B). Soluble NKG2D ligands can abrogate NK
activation and down regulate and block NKG2D on tumor
infiltrating lymphocytes (37, 38, 42). Recently it has become
clear that also aberrant glycosylation on tumor cells affects NK
activity. Jandus et al. demonstrated that sialic acid containing

carbohydrates on tumor cells serve as ligands for the siglec 7/9
receptors on NK and interfere with NK mediated anti-tumor
responses (43). This hypothesis is supported by findings that
enzymatic induction of high sialylation on tumors dampens
activity of NK (44) (Figure 1B).

Different studies therefore indicate that NK functions can be
turned off in the presence of a tumor, but the coin doesn’t always
flip from “good” to “inactive” but rather flips to “bad”, leaving
NK pro-tumorigenic. This has e.g., been described by Bruno
et al. who identified NK cells in patients with non-small cell lung
cancer that produced substantial levels of vascular endothelial
growth factor (VEGF), placental growth factor (PIGF) and IL-
8 and therefore might stimulate angiogenesis to enhance tumor
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growth (45, 46) and actively suppress immune responses (47)
(Figure 1B).

Therapeutically, it is a challenge to overcome the escape
mechanisms that tumors have developed to prevent NK killing
and to reverse NK paralysis. Many different strategies are
currently tested and some show promising results in preclinical
and increasingly clinical studies (10). Most studies have focused
on adoptive transfer of autologous, allogeneic or NK cell
lines to enhance NK cytotoxicity against tumors. All three
approaches show anti-tumor activity but with various efficacy
(48–53). Indeed, allogeneic hemopoietic stem cell transplant anti-
leukemia effects are partly mediated by NK cells (49–53). Other
promising approaches include blockade of inhibitory receptors
on NK using mAb which could recover effective NK mediated
killing activity (54–56) and chimeric antigen receptor (CAR)
technology that after extensive testing in T cells, have also been
applied to NK cells andmight constitute a promising approach to
enhance NK cell mediated anti-tumor responses (51–53, 57–59).
Indeed, autologous CAR-NK might be one way to avoid issues
of contaminating allogeneic T cells whilst augmenting the NK
activity specifically against the tumor, where appropriate CAR
targets are available.

To conclude, the relevance of NK in tumor immune responses
has been revealed in many studies. However, immune editing of
the tumor and immune suppression perpetrated by the tumor can
abrogate NK function limiting NK mediated lysis of tumor cells.
More insight in the exact contribution of NK cells in tumor
progression and ways to overcome NK paralysis is warranted to
optimize NK activating therapies.

NKT Cell Populations
There are 2 major populations of CD1d-restricted “NKT” cells
(T cells sharing some NK phenotypic and functional properties):
The better-known “Invariant natural killer T cells” (iNKT)
and polyclonal diverse “non-invariant” NKT cells (60, 61).
iNKT are a subset of lymphocytes with a significant role in
regulating immune responses, including immune surveillance
against tumors. iNKT recognize lipid antigens presented by
the monomorphic MHC-like molecule CD1d, predominantly
expressed by dendritic cells (DC) and other antigen presenting
cells (APC). iNKT were initially identified by their restricted
TCR repertoire (Vα14Jα18 in mice and Vα24Jα18 in humans),
but subsets expressing variable TCRs do also exist. The basis
of the regulatory function of iNKT appears to lie in their
capacity for rapid secretion of multiple cytokines upon TCR
triggering which is accompanied by an increased CD1d-restricted
cytotoxic capacity (60). Cytokines released by iNKT include both
regulatory cytokines (e.g., IL-4, IL-10, IL-13) as well as pro-
inflammatory cytokines such as IL-2, IL-17, and IFNγ, reflecting
their capacity to suppress or stimulate immune responses (61,
62). iNKT cell cytotoxic activity can be mediated by classical
granule-mediated mechanisms, although Fas / FasL dependent
killing has also be reported (60, 61) (Figure 1A).

iNKT recognize different microbial and endogenous antigens
such as gangliosides and glycolipids and therefore play a
substantial role during infection (63). However the compound
most efficient for activating iNKT is the marine sponge

derived glycolipid α-galactosylceramide (αGalCer). Ever since
the identification of αGalCer as prototypic high-affinity CD1d
binding lipid and potent iNKT stimulant, studies have shown
that iNKT activation with αGalCer promotes tumor rejection
and protects from the development of metastases in multiple
murine tumor models (64–67). This anti-tumor effect could be
further improved by injection of αGalCer-pulsed DCs and anti-
metastatic effects were shown to be driven by IFNγ (68–70).
Furthermore, IL-12, a master regulator of Th1 responses, like
αGalCer, drives the anti-metastatic activity of T cells, including
iNKT, as well as NK cells and effects of low dose IL-12 treatment
in murine tumor models can be predominantly mediated by the
activity of iNKT (66, 71–74).

Whereas multiple studies have shown the critical role of iNKT
in the induction of potent anti-tumor responses in response
to stimulation by the above-mentioned exogenous factors such
as αGalCer and IL-12, the physiological role of these cells
in tumor immunity remains more elusive. However, Smyth
et al indicated that, at least in a model of MCA-induced
fibrosarcomas, iNKT fulfill an essential role in tumor immune
surveillance. Adoptive transfer of iNKT from wild type mice into
iNKT cell deficient mice (Jα18 –/–) clearly showed a protective
effect on tumor outgrowth without a requirement of additional
exogenous stimuli (75). The contribution of iNKT cells to
immune surveillance has also been highlighted by findings on
their capacity to mature DC and subsequently activate NK and
cytotoxic CD8+ T cells, the latter two of which then become
potent cytotoxic cells. Upon recognition of CD1d:lipid complexes
and the costimulatory molecules CD80/86 on the surface of
DCs, iNKT cells up-regulate the IL-12R (66, 71–74) and
CD40L molecule. Subsequently, and mediated by CD40L, iNKT
induce DC maturation and release of IL-12. This IL-12 release
in turn potently increases IFNγ production by iNKT which
then, together with enhanced cross-presentation of DCs after
iNKT induced maturation, boosts activation of anti-tumorigenic
cytotoxic T lymphocytes (CTL) (76, 77) (Figure 1A). In other
words, iNKT have the capacity to jump-start immune responses
and together with DCs to bridge the innate and adaptive immune
systems.

Besides providing a pro-inflammatory status by interaction
with DCs, NK and CTL, iNKT have also been found to be
able to control tumor growth by killing tumor supportive IL-
6-producing CD1d+ CD68+ tumor associated macrophages
(TAM) (78). Moreover, iNKT could potentially also control
myeloid derived suppressor cells (MDSC) in the tumor
microenvironment (TME) (79, 80). Absence of iNKT in mice
infected with influenza virus resulted in strong expansion of
MDSC, but interestingly adoptive transfer of iNKT could abolish
suppressive activity of MDSCs. So, by targeting TAM andMDSC,
iNKT may skew the TME to a pro-immune milieu.

While the function of iNKT as regulators of immune
responses has been widely acknowledged (81, 82), the exact
mechanisms polarizing iNKT effector functions remain elusive,
thusfar in part limiting their therapeutic potential in clinical
trials. Studies in multiple human cancers have revealed selective
numerical and/or functional defects in the iNKT cell population.
Decreased numbers of circulating iNKT have been found
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in multiple tumor types such as advanced prostate cancer
and are accompanied by decreased IFNγ production and
increased IL-4 production by iNKT (83–85). Functional defects
of iNKT have been found in human multiple myeloma
where development from non-progressive or premalignant
gammopathy to progressive disease was marked by a strong
decrease in IFNγ producing iNKT in patient blood. However,
this functional defect could be reversed by using αGalCer-pulsed
matured dendritic cells (DCs) (86).

More functional iNKT defects have been described in
the TRAMP prostate cancer model (TRransgenic Adenoma
carcinoma of theMouse Prostate), similar to the functional iNKT
defects found in some human malignancies (87). In this model,
iNKT were attracted by tumor cells to migrate into prostate
tumors mediated through the CCL2-CCR5 axis. Interestingly,
these primary prostate tumors as well as mouse and human
prostate cancer cell lines and human prostate epithelium can
express CD1d, permitting direct interaction with iNKT. Indeed,
prostate tumor cells induce selective production of Th2 cytokines
by iNKT and thereby bias iNKT effector functions. Interestingly,
this aberrant iNKT activation was reversible by the simultaneous
addition of αGalCer and IL-12, which allowed iNKT cells to
produce IFNγ in response to these CD1d-expressing prostate
cancer cells. Restoration of iNKT cell functions by addition
of IL-12 with an agonistic CD1d ligand provides the first
of several complementary novel approaches for overcoming
iNKT defects in malignancy. Besides active skewing of iNKT
function via interaction with CD1d on tumor cells, some tumors
escape from iNKT cell lysis by loss of CD1d expression and
shedding of glycolipids, such as gangliotriaosylceramide which
can inhibit iNKT stimulation (88). In addition, it has been shown
that iNKT can acquire suppressive functions of regulatory T
cells, which is marked by nuclear expression of FoxP3 (89).
Finally, an interesting example of the potential complexity of
the interactions involving iNKT cells as with other immune
components has been recently reported (90). Gut microbiome
produced bile acids metabolites positively influenced iNKT
cell accumulation and anti-tumor activity in the liver via
activating liver sinusoidal endothelial cells to express iNKT
chemoattractant CXCL16 (90).

As well as the protective roles for iNKT in cancer
and the above-mentioned studies documenting tumor-induced
alterations of iNKT cell functions, other studies have also found
that some CD1d-restricted NKT cells can suppress anti-tumor
responses through regulatory cytokine(s) (91, 92). These “non-
invariant” NKT subsets, which are characterized by a diverse
TCR repertoire are mostly referred to as type II NKT and can
produce high levels of IL-13 through the IL4R/STAT6 pathway,
thus promoting tumor recurrence (92) (Figure 1B). Based on
these findings, Terabe et al. proposed a model in which type
II NKT are responsible for downregulating tumor immunity,
while type I NKT, as described above, are responsible for tumor
protection (93). Additional studies reported that myeloma-
derived lysophosphatidylcholine (LPC) could induce secretion of
IL-13 by a small Vα24−Vβ11− subset of NKT (94). Moreover, as
IL-13 can induce production of the immunosuppressive cytokine
TGF-β by MDSC (93), these data support the hypothesis of

NKT driven immune suppression (Figure 1B). Together, these
findings suggest a suppressive role of non-invariant NKT that
could be driven by IL-13. However, our knowledge about type
II NKT cells is still limited, in part due to a lack of specific
markers for this subset (only CD1d tetramers with sub-optimal
ligands are available) and their application is hampered by
limited knowledge of glycolipid antigens specific for type II NKT.
Therefore future studies are warranted to further specify the
complete roles of type II NKT.

Thus far, clinical studies have mainly focused on adoptive
transfer of autologous iNKT cell enriched in vitro-expanded
populations from peripheral blood mononuclear cells (PBMCs),
αGalCer-pulsed monocyte-derived DCs or a combination
of activated iNKT and αGalCer pulsed DCs (95–99). Also
administration of soluble αGalCer has been tested in clinical
trials (98, 99). Currently, clinical benefits are still relatively
limited and combinations as well as optimized strategies are
being considered (96, 99). Since ex vivo expansion of circulating
iNKT has to overcome their low frequencies in blood, induced
pluripotent stem cells (iPSCs) for the generation of large numbers
of iNKT might provide an alternative (100). Furthermore, a
general problem with current approaches might be that although
iNKT are systemically activated, their accumulation to the
tumor site is not guaranteed. Targeting iNKT to the tumor
microenvironment using bi-specific targeting could enhance
trafficking to tumor sites and therefore increase the total anti-
tumor response (101). The use of chimeric antigen receptors
(CARs), which combine the targeting effect of antibodies to
decrease off-target effects with the potent anti-tumor effector
functions of iNKT, has been shown to be promising in pre-
clinical studies and has already shown protection targeting GD2
for metastatic neuroblastoma in mice (102, 103).

As detailed above, “Type” I (invariant) NKT possess potent
cytotoxic activity against cancer cells, but numerical and
functional defects are limiting their full potential. Altogether,
it seems that type I NKT dysfunction in cancer may be
caused by acquired capacities of tumor cells to immobilize the
iNKT arm of anti-tumor defense. Thereby the putative role of
iNKT in immune surveillance seems to be extended toward
a more controlling role in behavior of cancer cells. On the
other hand, non-invariant/diverse NKT subsets (“Type II NKT”)
can actively downregulate tumor immunity through different
mechanisms (91–94). In the future, a more complete and
evolving understanding of reversible type I NKT defects together
with more insight in the mechanism behind type II NKT cell
mediated suppression of antitumor immune responses (or other
activities of these less understood and more diverse populations),
should help the development and evaluation of novel and
successful cancer therapies involving NKT populations (99, 103).

Gamma-Delta (γδ-) T Cells
γδ-T cells belong to the family of unconventional T cells and
differ from conventional αβ T cells, in that most γδ T cells
lack expression of the CD4 and CD8 co-receptors. Intriguingly
antigen recognition by the γδ TCR is not restricted to MHC-
class I and II molecules (104). In humans, 0.5–16% of all CD3+

cells in peripheral blood and lymphoid tissues is represented by
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γδ T cells (105, 106). In mice, this percentage varies between 1
and 4% (107). Human γδ-T cells can be divided into two major
subsets based on expression of the variable regions of TCR-δ;
Vδ1, or Vδ2 (108, 109). Vδ2 cells constitute the most prominent
subset in human peripheral blood and are almost always
paired with Vγ9+ (Vγ9Vδ2) while Vδ1 are more prominent
at mucosal areas (110–112). γδ T cells recognize multiple self
and non-self-antigens like phospholipids, small proteins and also
non-peptidic antigens, so-called pyro-phospho-antigens (pAg),
either in complex with butyrophilin 3A1 (BTN3A1, CD277) or
effecting a conformational change in BTN3A1/CD277 which in
turn leads to Vγ9Vδ2-T cell recognition (113–116). pAgs such
as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)
are not only produced by bacteria, but can also be produced
by tumor cells with a relatively high metabolic activity of the
mevalonate metabolic pathway resulting in the accumulation
of pAg intermediates such as isopentenyl pyrophosphate (IPP))
(114, 117). Vγ9Vδ2 TCR mediated recognition of accumulated
pAgs in tumor cells is mediated by BTN3A1/CD277 and results
in strong activation and expansion of Vγ9Vδ2-T cells which is
marked by the release of multiple pro-inflammatory cytokines
including IFNγ, TNF-α and/or interleukin-17 (IL-17 seems to
be mostly produced by Vδ1+ cells and it is not just a pro-
inflammatory antitumor cytokine) and a strong anti-tumor
response (109, 118–120) (Figure 1).

Besides activation of Vγ9Vδ2-T cells via TCR ligation,
engagement of the natural killer cell receptor NKG2D contributes
to the anti-tumor reactivity of Vγ9Vδ2 T andVδ1+ T cells. This is
especially interesting since NKG2D can bind stress- or infection
induced ligands of the non-classical MHC-I related molecules
H60, RAE1, and MULT in mice or MIC-A/B and ULBP1-ULBP6
in humans and while these molecules are absent on healthy cells,
they are often expressed by tumor cells (121–124) (Figure 1A).
Expression of ULBP molecules has been found in multiple types
of cancer (leukemia, lymphoma, ovarian and colon carcinomas
and hematological malignancies) and can therefore determine
susceptibility to Vγ9Vδ2-T cell mediated cytolysis (125–127).
Vδ1+ T cells not only recognize the stress induced self-antigens
MICA/B via NKG2D but can also directly bind MIC molecules
via their TCR (128, 129). Interestingly, enhanced expression of
MICA/B by oxidative stress on tumor cells has been correlated to
an increased frequency of Vδ1+ T cells among tumor infiltrating
lymphocytes (TIL) (130).

The involvement of γδ-T cells in the elimination of tumors
is at least partly based on their ability to interact with different
cell types. Besides offering B cell help and triggering of DC
maturation (131), Vγ9Vδ2 T cells show characteristics of antigen
presenting cells, including the processing and presentation
of antigens which allow the induction of naïve αβ T cell
proliferation and differentiation (132, 133). This hypothesis has
been further expanded by findings that Vγ9Vδ2-T cells, via
trogocytosis of CD1d, can function as platform to activate iNKT
in a CD1d-restricted manner (134). Since Vγ9Vδ2-T cells have
the capacity to interact with different immune cells, they are
important for both innate and adaptive anti-tumor responses.

The ability of γδ-T cells to generate huge amounts of
pro-inflammatory cytokines, to recognize cell stress via an

MHC independent mechanism, to potentiate other immune cell
components, both innate and adaptive, and directly mediate
cytolysis of multiple tumor types, potentially make γδ-T cells key
players in anti-tumor immune responses and as such attractive
therapeutic targets.

The potential impact of γδ-T cells on cancer immunotherapy
has been reported in multiple studies showing γδ-T cells to be
able to recognize and kill multiple different tumor types in vitro
including leukemia, numerous carcinomas and neuroblastoma
(125, 135–137). Several clinical trials have been conducted
using aminobisphosphonates such as zoledronic acid (Zol) to
manipulate intracellular levels of IPP (138–140). Administration
of a combination of Zol with low dose IL-2 to patients with
metastatic breast cancer or prostate cancer was well tolerated
and increased peripheral blood Vγ9Vδ2-T cell numbers, which
correlated with clinical outcome (141). In addition, synthetic
pAgs, such as BrHPP have been tested in clinical trials and
been shown to increase recognition of different tumor cells by
Vγ9Vδ2-T cells (108). Interestingly, treatment with common
chemotherapeutic compounds (e.g., temozolomide) has been
shown to increase expression of stress associated NKG2D ligands
on tumor cells, thereby possibly sensitizing tumor cells for
Vγ9Vδ2-T recognition and opening windows for Vγ9Vδ2-T
based immunotherapies (142).

While multiple studies have shown that γδ-T cells exhibit
anti-tumor activity, the potential involvement of γδ-T cells
in tumor progression remains rather elusive. Recently mouse
and human studies emphasized a pro-tumorigenic activity
of IL-17 producing and regulatory γδ-T cells (γδ T17/γδ1
Tregs) (Figure 1B). Whereas Ma et al. reported on the
contribution of IL-17 producing γδ-T cells to the efficacy
of anticancer chemotherapies (143), other reports showed an
inverse correlation between γδ-T17 cells and overall survival,
suggesting immune suppressive and tumor promoting properties
of γδ-T cells by promoting accumulation of MDSCs and
angiogenesis respectively (144, 145). In a transplantable model of
peritoneal and ovarian cancer, γδ T17 (Vγ6+) cells were shown
to preferentially produce IL-17 instead of IFNγ and to promote
tumor growth (146). Interestingly, a reduction in tumor size was
observed in TCRδ and IL-17 deficientmice compared to wild type
mice, further suggesting a pivotal role of γδ T17 cells in cancer
progression in this model.

Although Vγ6+ cells do not exist in humans, enriched
amounts of Vδ1+ T cells with regulatory properties (γδ1-Tregs)
have been identified in TIL of patients with breast cancer (128,
147). These γδ1-Tregs can suppress naïve and effector T cell
responses and concordantly block maturation of dendritic cells.
A more detailed in-depth study on the correlation of breast
cancer TIL phenotypes with clinical outcome revealed that
infiltration of γδ1-Tregs was correlated to poor prognosis (148).
Together these findings imply a critical role of some γδ-T cell
subsets as immune suppressors and emphasize the need for more
detailed studies to better understand their regulatory functions
in order to ultimately design effective innate γδ-T cell based
therapeutic strategies.

Although a lot of effort has been put in understanding
γδ-T cell function in tumor immunity, it is becoming clear
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that the overall impact of γδ-T cells in cancer treatment may
depend on the fine balance between anti- and pro-tumorigenic
subsets. Current challenges to optimize anti-cancer therapies lie
in the quest to determine how γδ-T cell mediated anti-tumor
properties can be selectively boosted, while at the same time their
suppressive activity is inhibited.

MAIT Cells
Mucosal associated invariant T (MAIT) cells belong to another
discrete subpopulation of T cells that is characterized by a
limited TCR repertoire. Most human MAIT cells express Vα7.2-
Jα33 and like in iNKT, the invariant α chain is paired with a
limited diversity of TCRβ chains (Vß2 and Vß13) (149). CD161
is abundantly expressed on MAIT cells and they are highly
sensitive to IL-12 and IL-18 stimulation due to their expression
of IL-12R and IL-18R (150). MAIT cells recognize a variety of
antigens, including bacterial and fungal derivates andmetabolites
of vitamin B2 (riboflavin) and B9 (folate), presented by the
invariant MHC related 1 molecule (MR1) and they appear to
represent important players in antimicrobial immunity (151).
Their preferential location of Vα7.2-Jα33 cells is inmucosal tissue
such as the gut lamina propria, but MAIT cells are also relatively
abundant in peripheral blood and liver (152–154). Compared to
iNKT they represent a relatively abundant cell population, with
1–4% of total TCR-αβ+ T cells (154). MAIT cells can secrete
multiple cytokines such as IFNγ, IL-17, and TNF-α and possess
lytic activity through the release of granzyme B upon activation
(155, 156) (Figure 1). Since both the Th1 skewing cytokine IFNγ

and the Th17 characterizing cytokine IL-17 are secreted byMAIT
cells, these cells might be of great importance in the induction of
either advantageous or deleterious immune responses in terms of
cancer control (Figure 1).

In the past decade most publications on the roles of MAIT
cells have focused on protection against infectious pathogens and
in some auto immune related disorders, whereas information
about their involvement in cancer immunity is relatively scarce.
However, findings that accumulated MAIT cells appear to have a
protective role in inflammatory bowel diseases (IBD) in humans
(152) and the fact that TIL-induced intestinal inflammation
present in colorectal cancer (CRC) can alter the prognosis of
patients with CRC (157), suggests that intestinal MAIT cells can
infiltrate into CRC tumor sites and fulfill a protective function,
like in IBD. Indeed, multiple studies have recently reported active
accumulation of MAIT cells in CRC while circulating activated
and memory MAIT cell numbers were decreased, suggesting
active homing to tumor sites (158, 159). Infiltration ofMAIT cells
in patients with glioblastoma and renal carcinoma in previous
reports support this homing and tumor infiltrating capacity
(160). Circulating MAIT cells in patients with progressive disease
were significantly lower than in early stage CRC patients (158).
Although it was shown that tumor infiltrating MAIT cells
produced lower levels of IFNγ (and relatively high amounts of
IL-17) compared to unaffected colon tissue and that this decrease
was independent of lowered expression of MR1 on tumor cells
(158, 161), the exact factors in the tumor microenvironment
hampering antitumor effector cytokine secretion still remain
elusive. Similar effects seem to apply to suppression of function

of MAIT cells in CRC metastases to the liver (162). Finally,
such defects may be common to a wide variety of cancers (163),
since their numbers and activity are also reduced in myeloma
patients, although which came first: the defects or the cancer,
was a question raised by the finding that carefully age matched
(generally older) people have reduced MAIT cells (164).

Until now, little is known about MR1 distribution and it has
yet to be elucidated whetherMR1 expression on tumor cells could
be important in MAIT cell activation. Furthermore, in order to
better understand MAIT cell interactions in neoplasms and to
exploit MAIT cells for immune therapies, more detailed studies
on new ligands and ligand driven expansion are urgently needed.

CONCLUSIONS: COMBINING INNATE
IMMUNE THERAPIES WITH CHEMO- AND
OTHER THERAPIES

Innate immune cells may represent the first line of defense against
malignancies, e.g., through theMHC-independent recognition of
their metabolically stressed state, and their potency as regulators
and mediators of tumor immune responses, both innate and
adaptive, has been widely acknowledged as discussed above
(Figure 1). Therefore classical NK cells and the different innate
(semi)-invariant T cell subsets have garnered interest in the field
of anti-cancer immunotherapies and multiple NK, iNKT, and γδ-
T based immunotherapeutic approaches are currently clinically
tested. Although these therapies show some promising results,
overall clinical benefits are still limited and the explored strategies
need to be optimized. Identification of mechanisms underlying
NK, iNKT, γδ-T, and MAIT cells defects, which have been
observed in patients with cancer, could fuel the development of
alternative approaches to current treatments. For example, in the
case of immune editing to evade NK effector function, blockade
of inhibitory receptors on NK cells to overcome NK paralysis has
made its first steps in clinical trials. Overall, defined molecular
mechanisms and interactions of tumor cells with immune cells
in the tumor microenvironment need to be further investigated
in order to understand how local immune suppression of effector
cells can be overcome.

There is a general consensus that in order for immunotherapy
to be fully effective combinatorial therapies need to be
developed and clinically tested. Multiple studies have indicated
that low-dose chemotherapeutics can reduce local immune
suppression by, for example elimination of MDSC in the tumor
microenvironment (165–167), and therefore increase efficacy of
already applied immune therapies. Since IL-13 producing type II
NKT have been associated with immune suppression mediated
via MDSC-derived TGF-β, combining NKT based therapies with
chemotherapeutics might reverse the flavor of NKT in this case
from “bad” to “good” in terms of cancer control. Therefore,
combining immune therapy with chemo-therapy could perhaps
also benefit innate immunity based anti-tumor therapies in
certain circumstances. Moreover, the immune system comprises
many elements which are tightly regulated and connected and
as such cross-talk of innate effector cells with each other or
with other immune cells could be exploited to enhance the
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efficacy of current therapies. For example, close crosstalk between
iNKTs and Vγ9Vδ2-T cells has been described, in such a way
that αGalCer activated iNKT to enhance CD25 expression and
IFNγ production of γδ-T cells via secretion of TNF-α (168). The
findings that iNKT can potentiate antitumor effector functions
of Vγ9Vδ2-T cells and that Vγ9Vδ2-T cells possess unique
features to activate iNKT, opens up new avenues to strengthen
future iNKT and Vγ9Vδ2 T cell based immunotherapeutic
approaches. An alternative approach for combinatorial therapy
could be to enhance the interaction of iNKT with DCs using
vehicles/vaccines to target both types of cells in order tomaximize
anti-tumor effects. Indeed, an OVA peptide/CpG vaccine
combined with recombinant α-galactosylceramide (αGC)-loaded
CD1d-anti-HER2 fusion protein showed increased expansion of
OVA-specific CTLs and was likely mediated via maturation of
DCs (169).

Nowadays, great advances have been made in the available
detection methods for monitoring immune cells in tumors
using mass cytometry. Also next generation (single cell)
sequencing of (invariant) T cells has proven itself to be
helpful for the identification of new invariant T cells (170).
These big data approaches facilitate identification and detailed
analysis of immune cells and their plasticity in malignancies

and will hopefully contribute to a better understanding

of dualistic roles of innate cells in cancer control and
progression.

In conclusion, innate immune effector (NK/T) lymphocyte
subsets are key in regulating cancer control versus progression.
If present hurdles can be overcome and the fine line between
their suppression or progression of tumor growth has been
further elucidated, NK cells, iNKT, γδ T, and MAIT cells hold
great promise for the induction of long lasting anti-tumor
immunity.
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