8 research outputs found

    Validation of the Work Observation Method By Activity Timing (WOMBAT) method of conducting time-motion observations in critical care settings: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electronic documentation handling may facilitate information flows in health care settings to support better coordination of care among Health Care Providers (HCPs), but evidence is limited. Methods that accurately depict changes to the workflows of HCPs are needed to assess whether the introduction of a Critical Care clinical Information System (CCIS) to two Intensive Care Units (ICUs) represents a positive step for patient care. To evaluate a previously described method of quantifying amounts of time spent and interruptions encountered by HCPs working in two ICUs.</p> <p>Methods</p> <p>Observers used PDAs running the Work Observation Method By Activity Timing (WOMBAT) software to record the tasks performed by HCPs in advance of the introduction of a Critical Care clinical Information System (CCIS) to quantify amounts of time spent on tasks and interruptions encountered by HCPs in ICUs.</p> <p>Results</p> <p>We report the percentages of time spent on each task category, and the rates of interruptions observed for physicians, nurses, respiratory therapists, and unit clerks. Compared with previously published data from Australian hospital wards, interdisciplinary information sharing and communication in ICUs explain higher proportions of time spent on professional communication and documentation by nurses and physicians, as well as more frequent interruptions which are often followed by professional communication tasks.</p> <p>Conclusions</p> <p>Critical care workloads include requirements for timely information sharing and communication and explain the differences we observed between the two datasets. The data presented here further validate the WOMBAT method, and support plans to compare workflows before and after the introduction of electronic documentation methods in ICUs.</p

    Renal Thrombotic Microangiopathy in Mice with Combined Deletion of Endocytic Recycling Regulators EHD3 and EHD4

    Get PDF
    Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3–/– mice and assessed renal development and pathology. Ehd3–/– animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3–/– mice and suggested functional compensation, we generated and analyzed Ehd3–/–; Ehd4–/– mice. These mice were smaller, possessed smaller and paler kidneys, were proteinuric and died between 3–24 weeks of age. Detailed analyses of Ehd3–/–; Ehd4–/– kidneys demonstrated thrombotic microangiopathy (TMA)-like glomerular lesions including thickening and duplication of glomerular basement membrane, endothelial swelling and loss of fenestrations. Other changes included segmental podocyte foot process effacement, mesangial interposition, and abnormal podocytic and mesangial marker expression. The glomerular lesions observed were strikingly similar to those seen in human pre-eclampsia and mouse models of reduced VEGF expression. As altered glomerular endothelial VEGFR2 expression and localization and increased apoptosis was observed in the absence of EHD3 and EHD4, we propose that EHD-mediated endocytic traffic of key surface receptors such as VEGFR2 is essential for physiological control of glomerular function. Furthermore, Ehd3–/–; Ehd4–/– mice provide a unique model to elucidate mechanisms of glomerular endothelial injury which is observed in a wide variety of human renal and extra-renal diseases

    Single Collateral Reconstructions Reveal Distinct Phases of Corticospinal Remodeling after Spinal Cord Injury

    Get PDF
    Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood

    Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion.

    No full text
    Severe spinal cord contusions interrupt nearly all brain projections to lumbar circuits producing leg movement. Failure of these projections to reorganize leads to permanent paralysis. Here we modeled these injuries in rodents. A severe contusion abolished all motor cortex projections below injury. However, the motor cortex immediately regained adaptive control over the paralyzed legs during electrochemical neuromodulation of lumbar circuits. Glutamatergic reticulospinal neurons with residual projections below the injury relayed the cortical command downstream. Gravity-assisted rehabilitation enabled by the neuromodulation therapy reinforced these reticulospinal projections, rerouting cortical information through this pathway. This circuit reorganization mediated a motor cortex-dependent recovery of natural walking and swimming without requiring neuromodulation. Cortico-reticulo-spinal circuit reorganization may also improve recovery in humans
    corecore