11,386 research outputs found

    Melt production in large-scale impact events: Implications and observations at terrestrial craters

    Get PDF
    The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base

    Melt production in large-scale impact events: Calculations of impact-melt volumes and crater scaling

    Get PDF
    Along with an apparent convergence in estimates of impact-melt volumes produced during planetary impact events, intensive efforts at deriving scaling relationships for crater dimensions have also yielded results. It is now possible to examine a variety of phenomena associated with impact-melt production during large cratering events and apply them to planetary problems. This contribution describes a method of combining calculations of impact-melt production with crater scaling to investigate the relationship between the two

    Melt production in large-scale impact events: Planetary observations and implications

    Get PDF
    Differences in scaling relationships for crater formation and the generation of impact melt should lead to a variety of observable features and phenomena. These relationships infer that the volume of the transient cavity (and final crater) relative to the volume of impact melt (and the depth to which melting occurs) decreases as the effects of gravity and impact velocity increase. Since planetary gravity and impact velocity are variables in the calculation of cavity and impact-melt volumes, the implications of the model calculation will vary between planetary bodies. Details of the model calculations of impact-melt generation as a function of impact and target physical conditions were provided elsewhere, as were attempts to validate the model through ground-truth data on melt volumes, shock attenuation, and morphology from terrestrial impact craters

    Radiation Pressure in Massive Star Formation

    Full text link
    Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.Comment: To be appear in "IAU 227: Massive Star Birth: A Crossroads of Astrophysics"; 6 pages, 1 figur

    Putting formal specifications under the magnifying glass: Model-based testing for validation

    Get PDF
    A software development process is effectively an abstract form of model transformation, starting from an end-user model of requirements, through to a system model for which code can be automatically generated. The success (or failure) of such a transformation depends substantially on obtaining a correct, well-formed initial model that captures user concerns. Model-based testing automates black box testing based on the model of the system under analysis. This paper proposes and evaluates a novel model-based testing technique that aims to reveal specification/requirement-related errors by generating test cases from a test model and exercising them on the design model. The case study outlined in the paper shows that a separate test model not only increases the level of objectivity of the requirements, but also supports the validation of the system under test through test case generation. The results obtained from the case study support the hypothesis that there may be discrepancies between the formal specification of the system modeled at developer end and the problem to be solved, and using solely formal verification methods may not be sufficient to reveal these. The approach presented in this paper aims at providing means to obtain greater confidence in the design model that is used as the basis for code generation

    Exploring flow occurrence in elite golf

    Get PDF
    Research on flow (Csikszentmihalyi, 1975) has traditionally focused on reactive, externally-paced sports (e.g., tennis) without exploring those that are self-paced and stop-start in nature. This study investigated the occurrence of flow in a sample of thirteen elite golfers by conducting semi-structured interviews discussing: (i) their experiences of flow, (ii) factors that influenced flow occurrence, and (iii) the controllability of these experiences. Results shared similarity with existing research in terms of the majority of influencing factors reported, including motivation, preparation, focus, psychological state, environmental and situational conditions, and arousal, and that flow was reported to be at least potentially controllable. Golf-specific influences were also noted, including pre-shot routines, use of psychological interventions, standard of performance, and maintenance of physical state, suggesting that flow may have occurred differently for this sample. Findings are discussed and applied recommendations are made that may help golfers put relevant factors in place to increase the likelihood of experiencing flow

    How Protostellar Outflows Help Massive Stars Form

    Full text link
    We consider the effects of an outflow on radiation escaping from the infalling envelope around a massive protostar. Using numerical radiative transfer calculations, we show that outflows with properties comparable to those observed around massive stars lead to significant anisotropy in the stellar radiation field, which greatly reduces the radiation pressure experienced by gas in the infalling envelope. This means that radiation pressure is a much less significant barrier to massive star formation than has previously been thought.Comment: 4 pages, 2 figures, emulateapj, accepted for publication in ApJ Letter
    corecore