70 research outputs found

    Baryon number conservation in Bose-Einstein condensate black holes

    Full text link
    Primordial black holes are studied in the Bose-Einstein condensate description of space-time. The question of baryon-number conservation is investigated with emphasis on possible formation of bound states of the system's remaining captured baryons. This leads to distinct predictions for both the formation time, which for the naively natural assumptions is shown to lie between 10^{-12}\.\srm to 10^{12}\.\srm after Big Bang, as well as for the remnant's mass, yielding approximately 31023kg˙3 \cdot 10^{23}\.{\rm kg} in the same scheme. The consequences for astrophysically formed black holes are also considered.Comment: 5 pages, no figure

    On Ellipsoidal Collapse and Primordial Black-Hole Formation

    Full text link
    We reinvestigate gravitational ellipsoidal collapse with special focus on its impact on primordial black-hole formation. For a generic model we demonstrate that the abundance and energy density of the produced primordial black holes will be significantly decreased when the non-sphericity of the overdensities is taken into account.Comment: 4 pages, 1 figure; v2: minor changes; report number added; v3: references adde

    Corpuscular Consideration of Eternal Inflation

    Get PDF
    We review the paradigm of eternal inflation in the light of the recently proposed corpuscular picture of space-time. Comparing the strength of the average fluctuation of the field up its potential with that of quantum depletion, we show that the latter can be dominant. We then study the full respective distributions in order to show that the fraction of the space-time which has an increasing potential is always below the eternal-inflation threshold. We prove that for monomial potentials eternal inflaton is excluded. This is likely to hold for other models as well.Comment: 10 pages, 2 figures; revised version to match submitted versio

    Effectively nonlocal metric-affine gravity

    Full text link
    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with non-singular and cosmologically interesting properties may be recovered. Relations between different formulations are analysed at both perturbative and nonperturbative levels taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.Comment: 12 pages; minor changes; published versio

    Uncertainties in primordial black-hole constraints on the primordial power spectrum

    Get PDF
    The existence (and abundance) of primordial black holes (PBHs) is governed by the power spectrum of primordial perturbations generated during inflation. So far no PBHs have been observed, and instead, increasingly stringent bounds on their existence at different scales have been obtained. Up until recently, this has been exploited in attempts to constrain parts of the inflationary power spectrum that are unconstrained by cosmological observations. We first point out that the simple translation of the PBH non-observation bounds into constraints on the primordial power spectrum is inaccurate as it fails to include realistic aspects of PBH formation and evolution. We then demonstrate, by studying two examples of uncertainties from the effects of critical and non-spherical collapse, that even though they may seem small, they have important implications for the usefulness of the constraints. In particular, we point out that the uncertainty induced by non-spherical collapse may be much larger than the difference between particular bounds from PBH non-observations and the general maximum cap stemming from the condition Ω1\Omega \leq 1 on the dark-matter density in the form of PBHs. We therefore make the cautious suggestion of applying only the overall maximum dark-matter constraint to models of early Universe, as this requirement seems to currently provide a more reliable constraint, which better reflects our current lack of detailed knowledge of PBH formation. These, and other effects, such as merging, clustering and accretion, may also loosen constraints from non-observations of other primordial compact objects such as ultra-compact minihalos of dark matter.Comment: 6 pages, 2 figures; v4: revised version to match published versio

    Cosmology of the selfaccelerating third order Galileon

    Full text link
    In this paper we start from the original formulation of the galileon model with the original choice for couplings to gravity. Within this framework we find that there is still a subset of possible Lagrangians that give selfaccelerating solutions with stable spherically symmetric solutions. This is a certain constrained subset of the third order galileon which has not been explored before. We develop and explore the background cosmological evolution of this model drawing intuition from other even more restricted galileon models. The numerical results confirm the presence of selfacceleration, but also reveals a possible instability with respect to galileon perturbations.Comment: 30 pages, 24 figure
    corecore