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Uncertainties in primordial black-hole constraints on the primordial power spectrum
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The existence (and abundance) of primordial black holes (PBHs) is governed by the power spectrum
of primordial perturbations generated during inflation. So far no PBHs have been observed, and
instead, increasingly stringent bounds on their existence at different scales have been obtained.
Up until recently, this has been exploited in attempts to constrain parts of the inflationary power
spectrum that are unconstrained by cosmological observations. We first point out that the simple
translation of the PBH non-observation bounds into constraints on the primordial power spectrum
is inaccurate as it fails to include realistic aspects of PBH formation and evolution. We then
demonstrate, by studying two examples of uncertainties from the effects of critical and non-spherical
collapse, that even though they may seem small, they have important implications for the usefulness
of the constraints. In particular, we point out that the uncertainty induced by non-spherical collapse
may be much larger than the difference between particular bounds from PBH non-observations
and the general maximum cap stemming from the condition Ω ≤ 1 on the dark-matter density
in the form of PBHs. We therefore make the cautious suggestion of applying only the overall
maximum dark-matter constraint to models of early Universe, as this requirement seems to currently
provide a more reliable constraint, which better reflects our current lack of detailed knowledge
of PBH formation. These, and other effects, such as merging, clustering and accretion, may also
loosen constraints from non-observations of other primordial compact objects such as ultra-compact
minihalos of dark matter.

Keywords: primordial black holes, primordial power spectrum, dark matter

Introduction — Cosmological observations, in particu-
lar those of the cosmic microwave background (CMB)
anisotropies [1, 2], place tight constraints on the proper-
ties of the primordial density (or curvature) fluctuations
on large scales through the accurate measurements of
the primordial power spectrum [1, 3]. These measure-
ments, however, probe only a relatively small range of
scales, ie., wave numbers between k ∼ 10−3 Mpc−1 and
k ∼ 1 Mpc−1. Even though the measured power spectrum
on these cosmological scales provides strong evidence in
support of an inflationary phase [4–7] in the early Uni-
verse, and constrains various inflationary models and their
parameters [3], it only probes a small region of the infla-
ton potential. It has therefore been of importance to try
to extend the constraints on the curvature power spec-
trum to a wider range of scales using other cosmological
and astrophysical measurements. Power-spectrum con-
straints have been extended to k ∼ 104 Mpc−1 through
measurements of the CMB spectral distortions [8, 9], and
to k ∼ 104 Mpc−1 using constraints on entropy produc-
tion between Big Bang nucleosynthesis and today [10],
although these are currently only (fairly weak) upper
bounds on the amplitude of the spectrum.

One important set of such additional constraints on
small scales has been provided by non-observations of
primordial black holes (PBHs) [11, 12] that are expected
to have formed in the early Universe when very large
density perturbations collapsed. In most scenarios, these

overdensities are of inflationary origin [13–15].1 As soon as
the overdense regions come back into causal contact after
inflation, they collapse if they exceed a medium-specific
threshold. PBHs form mainly in the radiation-dominated
epoch, hence a radiation medium is considered. Because
of the connection between the formation of PBHs and
the amplitude of primordial fluctuations, observations
or non-observations of PBHs could potentially further
constrain inflationary dynamics on scales far smaller than
the cosmological ones. PBHs have not been observed
yet, and constraints from their non-observations have
been used [14, 17–21] to place (currently weak) upper
limits on the amplitude of the power spectrum over a
very wide range of scales (from k ∼ 10−2 Mpc−1 to
k ∼ 1023 Mpc−1 [14]). Similar arguments are behind
another type of constraints on the power spectrum at
small scales, namely those from the non-observations of
ultra-compact minihalos of dark matter (UCMHs) [22, 23]
that are expected to have formed shortly after matter-
radiation equality when a perturbation with a very large
amplitude but not large enough to collapse to a black
hole enters the horizon [24–26].

By using well-known effects, in this Letter we question

1 Many more possibilities for PBH formation exist, and we refer
the interested reader to corresponding reviews (e.g. Ref. [16]).
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the current use of constraints on the existence and abun-
dance of PBHs (and similarly of UCMHs) to constrain
the primordial power spectrum. We first demonstrate,
via a simple example, that taking into account the known
realistic aspects of the PBH (and UCMH) formation and
evolution, such as the well-studied critical collapse, makes
the simple translation of the constraints on their existence
and abundance into constraints on the power spectrum
inaccurate. This, in turn, implies that the local details of
the current non-observation constraints are not reliable,
as the critical-collapse effect washes them out. We then
demonstrate that the effect of non-spherical collapse, as
is already known, can induce uncertainties that are or-
ders of magnitudes larger than the differences between
direct constraints from non-observations of PBHs and
the overall limit from the maximum total dark matter.
This renders the former constraints practically useless.
We therefore suggest the early-Universe model-builders to
apply only this overall maximum dark-matter constraint
to their models, as it currently provides the most reliable
constraint on the primordial power spectrum from PBHs.

Primordial black holes and power-spectrum constraints —
The näıve first estimate of PBH formation postulates that
the holes formed this way would have a mass M of the
order of the mass MH of a black hole of horizon size equal
to the Universe’s horizon at their time of formation. If
the underlying primordial power spectrum is Gaussian,
the simplest assumptions dictate that the fraction β of
the collapsed patches in the Universe at their time of
formation is given by [27]

β ≈ Erfc

(
δc√
2σ

)
. (1)

Here, δc is the critical overdensity, which, in radiation
domination, is found to be approximately equal to 0.45
(cf. Ref. [28]). Note that this value is essentially indepen-
dent of the mass of the collapsing space-time region. In
Eq. (1), σ denotes the root-mean square of the primordial
density power spectrum Pδ. Erfc is the complementary
error function Erfc ≡ 1−Erf, with Erf being the standard
error function. For values of β between 0 and 2, this func-
tion is invertible, and hence it might appear reasonable
that a constraint on the density of PBHs of a certain mass
could be translated into a constraint on the primordial
power spectrum (as has been, for instance, performed
in Refs. [18–21]).2 This procedure would open up a pos-
sible way to constrain the primordial power spectrum
at much smaller scales than those accessible with CMB
observations [1, 3].

2 In the case of a non-Gaussian power spectrum, the functional
form for β is modified, but the function is still invertible over the
same domain.

However, this näıve procedure has been shown to
be too simplistic and may lead to tremendous errors
(cf. Refs. [29, 30]). There are several important effects
which need to be accounted for in order for the transfor-
mation between the primordial power spectrum and the
PBH mass distribution to yield reliable answers.

Sources of uncertainty — The first and best studied of
these effects is perhaps that of the critical collapse. As has
been argued theoretically [31, 32], and was later also found
in numerical investigations [27, 28, 33, 34] of collapse in
full general relativity, primordial black holes actually form
through the so-called critical collapse. By this, it is meant
that the holes are not produced mono-chromatically, with
their mass M just being equal (or proportional) to the
horizon mass, but form subject to the so-called critical
scaling

M = kMH (δ − δc)γ . (2)

Here, k is a real, positive constant, and the quantity δ
denotes the overdensity. In radiation domination and for
spherical density profiles — which will be assumed from
now on — one finds γ = 0.36 and k = 3.3 (cf. Ref. [28]).
Eq. (2) describes the generation of a PBH mass distribu-
tion at each instance of time at which the overdensities
reenter the horizon. Generically, also the initial spectrum
of overdensities will be extended, leading to PBH forma-
tion in a range of different horizon masses, which will then
be convoluted with the critical-collapse effect. Hence, one
looses the one-to-one correspondence between PBH mass
and formation time/scale.

If the shapes of the overdensities are non-spherical,
which is to be expected in a realistic distribution, this
may also lead to large effects, as has been pointed out
recently in Ref. [30]. This non-sphericity effect is likely
to strongly reduce the overall production of PBHs, yield-
ing significantly weaker constraints on the primordial
power spectrum from PBH non-observations. Although
corresponding detailed numerical studies are still lacking,
utilizing the estimate for ellipsoidal collapse of Ref. [30],
we are essentially led to changes in the threshold of the
density contrast δc, which increases as

δc → δec ≡ δc

[
1 + κ

(
σ2

δ2c

)ν ]
. (3)

This is exactly the functional form as found in the study of
ellipsoidal galactic halo formation [35]. The parameters κ
and ν are unknown, but suggestions can be the theoretical
näıve estimates κ = 9/

√
10π and ν = 1/2, or halo-like

estimates κ = 0.47 and ν = 0.67. It is easy to show, by
demanding the same final value of β (cf. Eq. (1)), and
given a model with a certain threshold δc and a variance
σ1, that changing to a new threshold δec (cf. Eq. (3))
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demands the replacement

σ1 → σ2 ≈
δc

W
(

exp
[
− δc/(2σ2

1)
]
δ2ec/σ

2
1

) . (4)

Here, W is the Lambert W-function, which is defined as
the inverse function of f(W) = W exp (W).

Another source of potential uncertainty is provided by
primordial non-Gaussianities. These might be particu-
larly relevant as PBH formation requires density contrasts
of large, ie. O(1), magnitude deep inside the tail of the re-
spective distribution where deviations from the Gaussian
spectrum may have a particularly large effect. Like non-
sphericities, these more or less shift the PBH abundance,
albeit this effect can be in both directions, depending on
the sign of the non-Gaussianity [16, 36–38]. However, if
a significant amount of dark matter exists in the form of
PBHs formed from a non-Gaussian spectrum, this will
also add isocurvature effects to the CMB. As these are
strongly constrained, PBHs from such an origin should
be ruled out a priori as a large contributor to dark mat-
ter; for details see Refs. [37–39]. Hence, at the current
constraint level, non-gaussian effects of models will either
have a relatively moderate effect, or the isocurvature ef-
fects they have will rule them out immediately. Hence,
we do not consider such effects directly here.

Besides the mentioned effects, PBHs could undergo
accretion [40] or merger events [12, 41, 42] that would
also modify the spectrum observed today, and would thus
also contribute to the mixing of PBH masses originating
from different parts of the primordial overdensities.

Here, we argue that these realistic effects together, and
maybe in particular the less well-studied effects, make
it premature to use the non-observations of PBHs to
reliably constrain the inflationary power spectrum, or any
other PBH formation sources, at the level implied by the
exclusion plots that are widely used at present. Although
this may be known to the majority of PBH experts, such
constraints may also be used by those working on inflation
or other aspects of the early Universe. The detailed use
of the plots reflecting details in observational constraints
may imply to the outsider a level of certainty in the
constraints, which we argue is highly overstated.

Two examples: critical collapse and non-sphericities — Let
us demonstrate this first by a concrete example where the
inclusion of the critical collapse to a seemingly excluded
power spectrum will render a PBH mass distribution
allowed by the same data used to exclude it. We do
this by incorporating the critical-collapse effect in our
analysis. As an underlying set-up, which generates the
initial spectrum of overdensities, we use the running-mass
inflationary model [43, 44] as in Ref. [16]. PBH formation
in this model has been intensively studied in the literature
(cf. Refs. [16, 29, 45–48] and references therein). Perhaps
the simplest realization of this model is via the inflationary

potential

V (φ) = V0 +
1

2
m2
φ(φ)φ2 , (5)

where φ is the inflaton and V0 is a constant. There
exists a plethora of embeddings of this model in various
frameworks, such as hybrid inflation [49], which lead to
different functions mφ(φ). These yield distinct expressions
for the primordial density power spectra whose variance
can be recast into the general form [46]

[
σ(k)

]2 ' 8

81
P(k?)

(
k

k?

)n(k)−1
Γ

(
ns(k) + 3

2

)
, (6)

where the spectral indices n(k) and ns(k) are given by

n(k) = ns(k?)−
1

2!
λ1 ln

(
k

k?

)
+

1

3!
λ2 ln2

(
k

k?

)
− 1

4!
λ3 ln3

(
k

k?

)
+ . . . , (7a)

ns(k) = ns(k?)− λ1 ln

(
k

k?

)
+

1

2
λ2 ln2

(
k

k?

)
− 1

6
λ3 ln3

(
k

k?

)
+ . . . , (7b)

with real parameters λi, i = 1, 2, 3. The spectral index
and amplitude of the primordial power spectrum at the
pivot scale k? = 0.002 Mpc−1 have been measured [3, 50,
51] to be ns(k?) ≈ 0.96 < 1 and P(k?) = O(10−9).

In Fig. 1 we show the power-spectrum constraints ob-
tained näıvely by inverting Eq. (1) (excluding the blue-
shaded regions above the blue, solid curve). Input con-
straints on β are taken from Ref. [16], but for easier
comparison with Ref. [21] constraints from the Eridanus
II cluster [52] and the CMB [53] have been excluded.
The green, dot-dashed curve depicts the power spec-
trum for the running-mass inflationary model specified
above (with parameters λ1 = 0.011, λ2 = 0.0245, and
λ3 = −0.00304345, in order to yield a dark-matter frac-
tion f of 100%, peaked around 30M�). Seemingly, this
model defies the bounds. However, when a PBH mass
spectrum is obtained for this model using the critical col-
lapse, it is not excluded by the original PBH constraints.
This can be found by applying the critical collapse effect
to the power spectrum, as described above. As the critical
collapse associated with the PBH formation particularly
lowers and broadens any initial mass spectrum, the re-
sulting mass distribution will still be compatible with the
observational constraints. Here, we have compared the
resulting PBH mass distribution to the constraints us-
ing the methodology described in Ref. [16].3 Concretely,

3 We have made sure that the number of bins used to compare
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this allows one to approximately determine, from the con-
straints calculated assuming a delta-function halo fraction,
whether an extended mass function is allowed or not. It
utilizes binning of the relevant mass range. Specifically,
a given constraint is first divided into locally monotonic
pieces. In each of these pieces one starts with the bin, say
i, where the constraint is smallest, and integrates df/dM
over this bin in order to obtain the fraction fi within
this bin, to see if it falls below the constraint. Then one
goes to the next bin, integrating over [Mi, Mi+1], and
adds this to fi in order to obtain fi+1, and so on. By
making the bins sufficiently small, any error related to
this discrete procedure can be made arbitrarily small.

A potential criticism of this example could be that even
though the power spectrum is allowed to have larger am-
plitudes than the current observational bounds when the
critical collapse is taken into account, it cannot go too
far from the bounds and therefore the current constraints
can still be used with relatively small uncertainties on
them, implying that the uncertainties do not affect the
observational bounds significantly. It may then be con-
cluded that the non-observation constraints have already
excluded a large part of the “allowed” region and are
therefore useful even if they are not accurate. We how-
ever argue that this is not the case, by showing also the
constraints computed through the inversion, according
to Eq. (1), of the constraints stemming exclusively from
the basic requirement Ω ≤ 1 for the dark-matter density
in the form of PBHs (red, dotted line in Fig. 1). Even
before applying any constraints from the non-observations
of PBHs, one can already exclude a large range of the
power-spectrum amplitudes at any scales by only applying
the Ω ≤ 1 condition. This means that we a priori already
have strong constraints on the spectrum, which signifi-
cantly reduces the region excluded by the non-observation
constraints. This remaining region can then be avoided, at
least over parts of the mass range, by taking into account
the critical-collapse effect, and we therefore do not gain
much by adding the non-observation constraints to the
original theoretical ones. In addition, the critical-collapse
effect smears out the local details of the non-observation
constraints, which are commonly used for excluding power
spectra with localized features.

In Ref. [55] a similar analysis has been made, and it

the extended mass function to the data is so extensive that the
method here does not suffer any of the problems indicated in
Ref. [54]. Note also that we use a somewhat less constraining
set of observations here. However, the result holds that a power
spectrum excluded using näıvely the inverse of Eq. (1) on a set of
observational constraints on PBHs may still be allowed when crit-
ical collapse is applied to obtain the mass distribution. I.e., we do
not claim that this PBH-generating power spectrum is generically
allowed by all current observations, only by observations we used
to originally exclude it at the level of the power spectrum.
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FIG. 1: Would-be power-spectrum constraints (blue, solid
curve) from non-observations of PBHs obtained from inverting
Eq. (1). These constraints are taken from Ref. [16], but for
easier comparison with Ref. [21] constraints from the Eridanus
II cluster [52] and the CMB [53] have been excluded. The red,
dotted line depicts an inversion according to Eq. (1) of the
constraints that stem exclusively from the basic requirement
Ω ≤ 1. The green, dot-dashed curve shows the power spectrum
of the running-mass model described in the main text.

is pointed out that the uncertainty due to the critical
collapse is considerably smaller than the one coming from
the uncertainty in the collapse threshold δc. This is true
to an even larger extent when the possibility of non-
spherical collapse is considered. Such an effect will in
practice introduce a much larger such uncertainty, though
this is a one-way uncertainty only weakening the bounds
on the primordial power spectrum. However, we feel
that the ramifications of the critical collapse are also
important. At present, observational effects are translated
into constraints on the power spectrum with localized
details recognizable from the observational constraints.
As the critical collapse smears out the picture, these
details are not necessarily retained in a true rendition of
the constraints.

We finally turn to non-sphericities, which induce much
larger effects on the combined power-spectrum constraints
than most of those derived from non-observations of PBHs,
such as microlensing constraints. This can be seen clearly
in Fig. 2 in which we again display the same constraints as
in Fig. 1 obtained from inverting Eq. (1). Here, we have
shown (black, dashed curve) how these constraints will
be weakened with a maximal hypothesis of non-sphericity
effects in Eq. (4). Note that, over the entire depicted mass
range, the effect of non-sphericities (which lies much above
even the basic constraints stemming exclusively from the
basic requirement Ω ≤ 1) might be significantly larger
than any of the constraints derived from non-observations
of PBHs (microlensing, etc.). Hence, the applicability
of these constraints to constrain the primordial power
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FIG. 2: Would-be power-spectrum constraints (blue, solid
curve) from non-observations of PBHs obtained from inverting
Eq. (1). These are the same as in Fig. 1. The black, dashed
curve shows how these constraints will be weakened with a
maximal hypothesis of non-sphericity effects in Eq. (4). Also
shown (red, dotted line) is the Ω ≤ 1 constraint. Note that
the latter lies below the former over the entire depicted mass
range.

spectrum is invalidated.4 Note that the constraints here
coming from the overall bound on Ω are still obtained
using only the simplest näıve inversion procedure Eq. (1).
We recommend to use this line at present to display a
rough level of the constraints today, not for its accuracy,
but precisely because its lack of localized features reflects
the lack of our current knowledge of the exact processes
that lead from the primordial power spectrum to PBHs.

Conclusions — Primordial black holes could form from
very high inflationary overdensities. This means that con-
straints on the existence and abundance of PBHs could
yield constraints on the inflationary power spectrum. In
principle, these constraints could reach over a huge range
of scales inaccessible by CMB and other cosmological ob-
servations. However, at present, there is no easy passage
from a constraint on the mass spectrum of PBHs. Though
such a passage seems possible from näıve assumptions,
effects like the critical collapse — which is well known —
must be taken into account, and at present no route has
been made which encompasses these. The critical collapse
affects the details of the constraints, making them unre-
liable. Furthermore, by using the known uncertainties
associated with non-spherical effects, we have demon-
strated that these might be so large that most of the
constraints from non-observations of PBHs would be prac-

4 This is even more true when one considers the dependence of the
threshold value δc on the shape of the overdensity, which can lead
to a 50% change of δc in some cases (cf. Refs. [56, 57]), making
it much larger than the non-spherical effects.

tically nonexistent. We have shown this by comparing
the non-sphericity uncertainties to the improvements in
the bounds on the power spectrum that we currently gain
by adding non-observation constraints to the constraints
coming exclusively from the simple requirement Ω ≤ 1 on
the dark-matter density in the form of PBHs. A similar
comparison shows that the critical-collapse effects can rule
in, at least over some scales, power spectra which are cur-
rently ruled out, with amplitudes all the way to the Ω ≤ 1
bound. In addition, other caveats in the formation and
subsequent evolution of PBHs from the inflationary power
spectrum, such as the effects of accretion, clustering, or
merging of the PBHs after their formation, are currently
not fully under control. Until these effects have been
studied carefully and taken into account, we recommend
to not make detailed constraints on the inflationary power
spectrum from non-observation constraints on PBHs. In
summary, the current (PBH non-observation) data seem
to not be adding much to our “theoretical priors” on
the power spectrum coming from the condition Ω ≤ 1, if
the uncertainties are taken into account. Therefore, we
suggest the cautious scientist to instead apply the sim-
plest scheme for going from PBH constraints to the ones
on the primordial power spectrum using only the overall
maximum dark-matter constraint. This, although subject
to the same uncertainties as non-observation constraints,
provides an approximate constraint reflecting our current
level of knowledge of mapping the primordial power spec-
trum to the PBH abundance, without overstating the
detailed properties of the constraints. Finally, we believe
that our arguments also apply to the constraints placed
on the power spectrum by observational constraints on
the existence and abundance of UCMHs, as the mech-
anism behind their formation and evolution resembles
that of PBHs. This does not concern the critical collapse,
but — even more pronounced — certainly non-sphericities,
which may have an even larger effect on the formation
of ultra-compact minihalos of dark matter compared to
PBHs.
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