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Abstract We review the paradigm of eternal inflation in the
light of the recently proposed corpuscular picture of space-
time. Comparing the strength of the average fluctuation of the
field up its potential with that of quantum depletion, we show
that the latter can be dominant. We then study the full respec-
tive distributions in order to show that the fraction of the
space-time which has an increasing potential is always below
the eternal-inflation threshold. We prove that for monomial
potentials eternal inflaton is excluded. This is likely to hold
for other models as well.

1 Introduction

Cosmological inflation [1,2] is one of the central building
blocks of our current understanding of the Universe. One of
its simplest realizations, which is still compatible with obser-
vations, is via a single scalar field, called inflaton. Today’s
structure in the Universe is seeded by the quantum fluctua-
tions of this field and of the space-time, and it is in remark-
able agreement with measurements (cf. [3–5]). Depending on
the value of the inflaton, it might experience large quantum
fluctuations, also and in particular, up its potential, therefore
inducing ever expanding inflationary patches of the Universe.
This is the idea behind eternal inflation [6,7] (cf. for a recent
review [8]).

These considerations are, however, only valid if the semi-
classical description of space-time is a faithful approxi-
mation. If gravity, like all other fundamental interactions,
possesses a quantum description, inevitably the question
arises when such a corpuscular picture of space-time starts
to become relevant. Recent progress by Dvali and Gomez
(cf. [9–15]), elaborating precisely on this topic, suggests that
in certain situations one necessarily needs to take the graviton
nature of what is classically regarded as space-time geometry
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into account. In fact, some phenomena, like Hawking radi-
ation, the Bekenstein entropy, or, the information paradox,
can only be fully understood in this quantum picture [9–15]
(cf. also [16–27] for recent progress).

The mentioned attempt leads to regard space-time, such
as black holes, de Sitter spaces, etc., as gravitationally bound
states in the form of weakly/marginally bound states, or
Bose–Einstein condensates, of gravitons with a mean wave-
length equal to the curvature radius of that space-time. Due
to the weak binding, quantum fluctuations are responsible for
emptying the ground state of the condensate. This depletion
is an intrinsically quantum effect, which is entirely missed
in any (semi-)classical treatment. In inflationary spaces, it
acts like a quantum clock which works against the semiclas-
sical one and, as we will investigate below, also against the
fluctuations of the scalar field up the potential.

Recently, in [15] it has been argued that the corpuscular
picture is incompatible with a positive cosmological con-
stant. Also, in Ref. [9] the authors argue that quantum deple-
tion sets a limit on the total number of e-foldings. Here, we
investigate those qualitative considerations in more detail by
quantitatively comparing the strengths of the relevant effects
and considering, via the full respective probability distribu-
tions, the fraction of the space-time which has an increasing
potential.

The mentioned corpuscular picture of quantum gravity, as
introduced in [9] (cf. also [10–15]), assumes gravitons on
a Minkowski background. Since they are bosons, and given
their peculiar attractive derivative self-coupling, they gener-
ically form Bose–Einstein condensates. In the limit of very
high graviton ground-state occupation number N , these con-
densates yield the emergent geometry which is observed at
the classical level.

Certain instances of these Bose–Einstein condensates are
very special as their particular densities put them at a point
of quantum criticality. This criticality occurs when the inter-
action strength α is inversely proportional to the number of
gravitons present in the condensate. In turn, these states can
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be defined in terms of a scale, which is also the characteristic
length scale of the system. The self-interactions of the gravi-
tons make this critical phase stable. This means that removal
or addition of gravitons to the critical condensate happens
self-similarly—changing the defining length scale of the sys-
tem while remaining at criticality. The defining length scale
is proportional to the square root of the number of gravitons
in the critical condensate. A prime example of such a state is
a Schwarzschild black hole, where the defining length scale
is the Schwarzschild radius RS and the graviton number is
N = (RS/LP)2.

The de Sitter or inflationary patch is another such con-
densate at criticality, where the defining length scale is the
Hubble radius RH and the graviton number N = (RH/LP)2.
This inflationary case is somewhat more complicated than
the black hole case, as the inflationary state is a compos-
ite, comprising a critical graviton Bose–Einstein condensate
interacting with a much higher-occupied inflaton condensate.

Though in the large-N limit the emergent geometries are
classical, the above outlined corpuscular description is fully
quantum at heart. Belonging to the quantum critical conden-
sate, the ground state of the gravitons has nearby, tightly
spaced Bogoliubov states, accessible through graviton-to-
graviton or graviton-to-inflaton scattering. In the inflationary
case, inflatons vastly outnumber gravitons, but inflaton self-
interactions cannot excite the inflatons from the ground state,
and hence graviton-to-inflaton scattering is the dominant
quantum processes which deteriorates the classical geom-
etry, and thereby also the anchor point of all semiclassical
computations.

In [9] it was argued qualitatively that this quantum deple-
tion of the condensates excludes eternal inflation. Here we
will expand on that argument to consider eternal inflation for
this corpuscular description of quantum gravity to do a quan-
titative exploration of the subject. We include all monomial
potentials, not only the m2 φ2-version that was considered
in [9].

2 Competing fluctuations

We consider a Universe filled with inflaton and graviton
condensates. The number of coherent inflatons in the infla-
ton condensate is Nφ and the number of coherent gravitons
in the graviton condensate is N .1 Working in Planck units
(c = � = MPl = 1), the number of coherent inflatons can
easily be defined as

Nφ := nφ R3
H = nφ

H3 , (1)

1 We will sometimes refer to the number of coherent inflatons/gravitons
in the condensates only as the number of inflatons/gravitons, as this is
the only numbers of particles we will be interested in.

where nφ is the number density of inflatons in the condensate.
The number of coherent gravitons is given by

N = R2
H = 1

H2 . (2)

When considering eternal inflation in view of the cor-
puscular description of gravity, we find that two competing
quantum effects are active: the quantum fluctuations of the
inflaton field due to the uncertainty principle, and the quan-
tum depletion of the inflaton and graviton condensates due
to graviton–inflaton scattering.

The typical quantum fluctuation due to the uncertainty
principle reads (cf. [6])

|φ̇| = H2

2π
. (3)

With an interaction strength of α = 1
N and with combina-

toric factors of NNφ and N (N − 1) for graviton–inflaton
and graviton–graviton scattering, respectively, the quantum
depletion of the coherent gravitons is, to leading order in
1/N , (cf. [9])

Ṅ � − 1√
N

Nφ

N
− 1√

N
Nls. (4)

Here Nls is the number of species that are lighter than the
energy of the gravitons in the condensate, which then present
a possible decay channel. If no such lighter species exist the
second term in Eq. (4) will just be −1/

√
N and represents

graviton–graviton scattering.
The quantum fluctuations in the inflaton medium is the

only source that may increase the energy of the inflaton
medium, pushing the inflaton upward in the potential. For
eternal inflation to be realized, this effect has to be larger
than the effect of depletion in a large enough fraction of the
space, so that combined with the continued inflation of this
fraction of space it increases the volume of the inflating part
of space-time. Since for each Hubble time this increase in
volume is e3, this fraction must be < e−3 ≈ 1/20 = 0.05.

To compare the two effects we look for simplicity at an
inflaton in the monomial potential

V (φ) = 1

n! λn φn, (5)

where n > 0, and we define the effective mass scale

meff(φ) ≡
√∣∣V ′′(φ)

∣∣, (6)

which for the case of V (φ) = 1/2m2 φ2 yields meff(φ) ≡
meff = m. We shall work in the slow-roll regime, |φ̇2| � |V |
and |φ̈2| � 3 H φ̇ ∼ |V,φ |, and use Eq. (4), the Friedmann
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equation H2 = 1/3V , and Nφ � (V/meff) R3
H, to obtain the

useful relations

φ � n

√
3n!
N λn

, (7a)

Nφ � n

√
3n!
N λn

√
3

n|n − 1| N , (7b)

φ̇ � −1

n
n

√
3n!
N λn

Ṅ

N
, (7c)

meff � n

√
N λn

3n!
√

3n|n − 1|
N

, (7d)

where we assume that n 	= 1.
For quantum fluctuations in Eq. (3) to move the inflaton

up the potential, the fluctuations have to be larger than the
average depletion (4), which deteriorates the state away from
semiclassicality. Using Eq. (7b) for Nφ in Eq. (4), we realize
that the magnitude of depletion is

|Ṅdep| � n

√
3n!
N λn

√
3

n|n − 1| N = 3

meff N
. (8)

We then insert Eqs. (7c) and (7d) into Eq. (3) to find the
contribution to Ṅ stemming from a typical quantum fluctua-
tion:

|Ṅqf | � n

2π

n

√
N λn

3n! = 1

2π

√
n

3 |n − 1| meff
√
N . (9)

For eternal inflation to make any sense, the quantum-
fluctuating effects that drive it must be dominating the effects
of the quantum depletion of the condensates. The two effects
might seem, in the case when the quantum fluctuations
drive the inflaton up its potential, to both push the conden-
sate toward lower values of N . However, the way in which
this happens is different. The depletion drives the conden-
sate away from its classical inflating description toward an
intrinsically quantum state. For this the coherent graviton-
condensate behavior which constitutes the inflating geome-
try no longer exists, and the description of this as inflation
(eternal or otherwise) disappears. Comparing (8) and (9) we
find that the condition for the quantum fluctuations being
dominant reads

N 3/4meff �

√
6π

√
3|n − 1|

n
. (10)

In order for eternal inflation to proceed when no corpuscu-
lar effects are present, the standard deviation of the Gaussian-
distributed quantum fluctuations must be large enough for
1/e3 ≈ 1/20 of the fluctuations to exceed the classical roll

down the potential. This gives the criterion: H2/|φ̇cl| � 3.8
(see [8]). Inserting for the corpuscular variables and our
potential (5), this translates to the demand:

N meff �
√

3|n − 1|
n

1

3.8
. (11)

To have eternal inflation, this bound must be fulfilled while
the quantum-depletion effects are still smaller than the reg-
ular quantum fluctuations. Taking the condition given for
the vacuum fluctuations to dominate over depletion (10) and
requiring that it holds above the bound yielding eternal infla-
tion classically (10), we find

|n − 1|
2500 π2n

� N . (12)

Since N can never go below 1, naïvely, eternal inflation can
never take place, because regardless of the value of n, this
bound will always imply that N is much smaller than 1, unless
n is extremely close to zero, which means that the potential
is extremely flat. In fact, formally

n � 4 × 10−5. (13)

in order for eternal inflation to have a chance of dominating
before depletion takes over, hence, naïvely we could already
exclude the occurrence of eternal inflation for all monomial
potentials.

Irrespective of the value of n, the above calculation was
just done by comparing the typical quantum fluctuation and
depletion. In order to get a more refined exclusion of eternal
inflation, we must consider the two distributions properly.
The quantum fluctuations approximately follow a Gaussian
distribution centered around zero. The depletion process is
given by a Poisson distribution [18–21].

For safe bounds on eternal inflation, we can compare the
two distributions at the lower bound for the potential, there-
fore, at the value of N meff where standard (non-corpuscular)
eternal inflation would occur [cf. Eq. (10)]. Inserting this into
Eq. (9) we find that here the Gaussian distribution has a stan-
dard deviation σ � (n/2π)(3.8n)−2/(2+n)(λn/3n!)1/(2+n),
whereas Eq. (8) implies that the Poisson distribution has an
expectation value of λ � 3.8

√
3n/|n − 1| .

In order to compare the two competing effects we must
then convolute the two probability distribution functions to
find the fractional convoluted area that gives an increase in
inflaton energy. That is, for each possible value for depletion,
we multiply its probability with the probability of all quan-
tum fluctuations that are large enough to dominate over it. In
practice this is done by integrating the Gaussian up to where
its contribution is the negative of each point on the Poisson
curve along the Poisson distribution:
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Fig. 1 The convolution integral Vup (cf. Eq. (14)) as a function of
the exponent n in V (φ) = 1/n! λn φn , for various values of the self-
coupling λn : 10−8 (blue dotted), 10−10 (red dashed), 10−12 (black
solid)

Vup �
∫ ∞

0
dt

λt e−λ

t !
[∫ −t

−∞
dx

1

σ
√

2π
e− x2

2σ2

]
; (14)

Vup is the fraction of the space-time that has an increasing
potential. Since the space-time volume in the inflating parts
of the Universe is multiplied by 20, eternal inflation can only
occur when Vup � 0.05. Figure 1 shows that, at least for
small n, eternal inflation is excluded. Note that the true value
of Vup will be lower in practice because the classical flow
will also pull the inflaton down its potential. Below we will
include this effect in the convolution integral.

When investigating the effect of the classical flow down
the potential along with the two quantum effects, we need to
consider the convoluted volume for decreasing values of N ,
from the classical onset of eternal inflation, and down toward
Planckian values, N ≈ 1. The magnitudes of the three effects
in this regime can be written

|Ṅqf | � n

2π

n

√
λn

3n! N
1
n , (15a)

|Ṅdep| �
√

3

n|n − 1|
n

√
3n!
λn

N− 2+n
2n , (15b)

|Ṅcl| �
(
V ′

V

)2

H N � n2
(

λn

3n!
) 2

n

N
4+n
2n . (15c)

The classical effect is always positive, whereas the depletion
effect is always negative. The quantum fluctuations can take
either positive or negative values, but the interesting ones that
may lead to eternal inflation are the negative ones. However,
as discussed above, this does not mean that the depletion and
the quantum fluctuations pull together toward an eternally
inflating state. The quantum-depletion effect on the contrary
drives the entire state away from its semiclassical descrip-
tion taking the gravitons out of their coherent state, which

makes inflation (eternal or not) meaningless. Thus it is in
fact classical flow and the depletion that together both pull
the physical state away from the eternally inflating state, but
in radically different ways, one by flowing toward the bottom
of the potential, and one by destroying the coherence of the
underlaying quantum state.

The naïve absolute maximum value for λn , which is
remotely sensible to consider, is the value for which eter-
nal inflation can begin only at Planck scales N � 1 in
Eq. (10), that is, λn, max � 3n! (3.8n)−n . In practice λn
would be much smaller than this as terms of higher order in
1/N become important when N approaches 1. The minimum
value of λn is harder to obtain. However, as λn decreases, the
width of the Gaussian function for the quantum fluctuations
decreases, making the quantum-depletion effects more dom-
inant.

For a given value of n and the self-coupling λn we can cal-
culate the fraction of the Universe undergoing eternal infla-
tion by evaluating the convolution integral for a given value
of N , which is formulated in such a way as to account for the
classical flow and the depletion both driving the state away
from the potentially eternally inflating state,

Vup �
∫ ∞

0
dt

λt e−λ

t !

[∫ −(t+tcl)

−∞
dx

1

σ
√

2π
e− x2

2σ2

]
, (16)

with λ = Ṅdep, σ = Ṅqf and tcl = Ṅcl as given in Eq. (15a-
c). The maximum N , which corresponds to standard/non-
corpuscular eternal inflation, reads

Nmax �
(

3n!
λn

) 2
n+2

(
1

3.8n

) 2n
n+2

. (17)

For instance, λn = 10−12 yields Nmax(n = 2) ∼ O(106),
Nmax(n = 3) ∼ O(105), and Nmax(n = 4) ∼ O(104).
As long as none of the resulting fractions (16) exceed 0.05,
eternal inflation will not occur.

In Fig. 2 we depict results of the general convolution
integral (16) for various values of the self-coupling λn
(10−12, 10−10, and 10−8) as well as for two values of N—
once for a 1/10 of the maximum allowed value as given
by (17), and once for 1/20 of it. For the values consid-
ered eternal inflation is dwarfed out by many orders of
magnitude. As n or λn increases, Nmax decreases, so for
values much larger than the ones considered here, either
for n or λn , even considering eternal inflation becomes
nonsensical. Hence eternal inflation does not occur for
canonical single-field inflation models with monomial self-
interactions.
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Fig. 2 The general convolution
integral Vup including the
classical drift (cf. Eq. (16)) as a
function of the exponent n in
V (φ) = 1/n! λn φn for various
values of the self-coupling λn :
10−8 (blue dotted), 10−10 (red
dashed), 10−12 (black solid);
upper panel: N = 0.05 Nmax;
lower panel: N = 0.1 Nmax
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3 Discussion and outlook

In this work we investigated the paradigm of eternal inflation
in view of the corpuscular picture of space-time for single-
field inflation models with monomial potentials. We have
compared the strength of the average fluctuation of the field
up its potential with that of quantum depletion, and showed
that the latter is dominant at least for small n.

In order to make a more refined statement, we then studied
the fraction of space-time which has an increasing potential
both with and without the effects of the classical roll present.
For the case where we only considered quantum fluctuations
versus quantum depletion, we could already prove the non-
existence of eternal inflation for the observationally relevant
small-n potential.

Including the classical effects we could show that the frac-
tion of space-time moving up the potential is always, i.e. for
any n, way below the eternal-inflation threshold. In summary,
we have proven that eternal inflation does strictly not occur
for all canonical single-field inflation models with monomial
self-interactions. This is a quantitative substantiation of the
claim made in [9,15] that corpuscular gravity prohibits eter-
nal inflation.

We believe that these findings are rather generic. In the
case of more general potentials, such as for instance hill-
top inflation, we still need the quantum fluctuations to be
comparable to the classical evolution in order to drive eter-
nal inflation. In these situations we also expect the deple-
tion effects to become large, and more importantly domi-
nate with respect to the usual quantum fluctuations, more or
less regardless of the detailed shape of the potential. Also
for many non-monomial potentials, the shape of the poten-
tial as seen in the case of an inflaton high enough up in the
potential for quantum fluctuations to be comparable to clas-
sical flow may be well approximated by a monomial poten-
tial.

We should stress that, in any case, at some finite point
in time the quantum-depletion effects will accumulate to an
extent that invalidates any (semi-)classical treatment, and
hence constitutes a radical shift away from the ”standard”
non-corpuscular description of eternal inflation. Then the
mean-field description is completely different from classi-

cal General Relativity and it will be impossible to reliably
say that eternal inflation occurs. These statements are com-
pletely generic for any corpuscular treatment of inflation,
and, in a forthcoming publication, we will further elaborate
on this (non-eternal) inflation for generic single-field infla-
tion models, using the quantitative methods developed in this
work.

Note that the mentioned physical mechanism investigated
in this work is very different from all the (semi-)classical
ones discussed previously in the literature, which investigate
bounds on the total number of e-foldings, originating from
extra-dimensions (cf. e.g. [28]), by assigning finite entropy
to de Sitter space [29–31], or, via thoroughly incorporating
the null-energy condition [32], for instance. Instead, here,
the limited duration of inflation originates from the quantum
resolution of the inflation as well as of the graviton conden-
sate, which constitute the classical backgrounds in the limit
of infinite N . In this limit no quantum depletion is present,
which, as we quantified, turns out to be crucial for prop-
erly deriving the criterion for the occurrence of eternal infla-
tion.

As the de Sitter solution might be approximated by the
extreme slow-roll version of inflation, the fact that inflation-
ary theories in the near-Planckian range are strongly domi-
nated by the depletion effect also strengthens the argument
found in [15] that the corpuscular view of gravity may have
bearing on the cosmological constant problem.
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