708 research outputs found

    Prompt J/psi production from Tevatron to LHC

    Full text link
    Models with essential non-perturbative QCD dynamics and describing Tevatron data on high-pp_\perp charmonium are extrapolated to give predictions of prompt J/psi production at the LHC. Differences of up to an order of magnitude occurs. An important point is here the treatment of higher order perturbative QCD effects.Comment: Presented at the VIII International Workshop on Hadron Physics (Hadrons 2002), Bento Goncalves, Brazil, 14 - 19 April 200

    Soft and hard QCD dynamics in hadroproduction of charmonium

    Get PDF
    Both hard and soft QCD dynamics are important in charmonium production, as presented here through a next-to-leading order QCD matrix element calculation combined with the colour evaporation model. Observed xFx_F and pp_\perp distributions of J/ψJ/\psi in hadroproduction at fixed target and ppˉp\bar{p} collider energies are reproduced. Quite similar results can also be obtained in a more phenomenologically useful Monte Carlo event generator where the perturbative production of \ccbar pairs is instead obtained through leading order matrix elements and the parton shower approximation of the higher order processes. The soft dynamics may alternatively be described by the soft colour interaction model, originally introduced in connection with rapidity gaps. We also discuss the relative rates of different charmonium states and introduce an improved model for mapping the continuous \ccbar mass spectrum on the physical charmonium resonances.Comment: 21 pages, 13 eps figure

    Soft and hard QCD in charmonium production

    Get PDF
    Hard and soft QCD dynamics are both important in charmonium hadroproduction, as presented here through a next-to-leading order QCD matrix element calculation combined with the colour evaporation model. Observed xFx_F and pp_\perp distributions of J/ψJ/\psi in hadroproduction are reproduced. Quite similar results can also be obtained with a Monte Carlo event generator where \ccbar pairs are instead produced through leading order matrix elements and the parton shower approximation of higher order processes. The soft dynamics may alternatively be described by the soft colour interaction model. We also discuss the relative rates of different charmonium states and introduce an improved model for mapping the continuous ccbar mass spectrum on the physical charmonium resonances.Comment: Presented at Pan American Advanced Studies Institute (PASI 2002), Campos do Jord\~ao, Brazil, January 7-18, 200

    Self-assembly of iron nanoclusters on the Fe3O4(111) superstructured surface

    Full text link
    We report on the self-organized growth of a regular array of Fe nanoclusters on a nanopatterned magnetite surface. Under oxidizing preparation conditions the (111) surface of magnetite exhibits a regular superstructure with three-fold symmetry and a 42 A periodicity. This superstructure represents an oxygen terminated (111) surface, which is reconstructed to form a periodically strained surface. This strain patterned surface has been used as a template for the growth of an ultrathin metal film. A Fe film of 0.5 A thickness was deposited on the substrate at room temperature. Fe nanoclusters are formed on top of the surface superstructure creating a regular array with the period of the superstructure. We also demonstrate that at least the initial stage of Fe growth occurs in two-dimensional mode. In the areas of the surface where the strain pattern is not formed, random nucleation of Fe was observed.Comment: 6 pages, 3 figure

    Atomically Resolved Spin-Dependent Tunnelling on the Oxygen-Terminated Fe3O4 (111)

    Full text link
    We employ spin-polarized (SP) STM to study the spin-dependent tunneling between a magnetite (111) sample and an antiferromagnetic tip through a vacuum barrier at room temperature. Atomic scale STM images show significant magnetic contrast corresponding to variations in the local surface states induced by oxygen vacancies. The estimated variations in tunneling magnetoresistance (TMR) of 250% suggest that the spin-transport properties are significantly altered locally by the presence of surface defects.Comment: 10 pages, 4 figure

    Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in the maintenance of heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription. Although many reports describe the active role of U-STAT3 in oncogenesis in addition to phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we identify the presence of two intermolecular disulfide bridges between Cys367 and Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and in vivo The presence of these disulfides is here demonstrated to largely contribute to the structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon reduction in the S-S bonds. In particular, the Cys367-Cys542 disulfide bridge is shown to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues completely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations confirm that the noncovalent interactions are sufficient for proper folding and dimer formation, but that the interchain disulfide bonds are crucial to preserve the functional dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first common step followed by stabilization through the formation of interchain disulfide bond
    corecore