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Signal transducer and activator of transcription 3 (STAT3) is a transcription factor
activated by the phosphorylation of tyrosine 705 in response to many cytokines and
growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been
described in response to cytokine stimulation, in cancers, and in the maintenance of
heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between
the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription.
Although many reports describe the active role of U-STAT3 in oncogenesis in addition to
phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.

In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we
identify the presence of two intermolecular disulfide bridges between Cys367 and
Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same
cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and
in vivo. The presence of these disulfides is here demonstrated to largely contribute to the
structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon
reduction in the S–S bonds. In particular, the Cys367–Cys542 disulfide bridge is shown
to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues com-
pletely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations
confirm that the noncovalent interactions are sufficient for proper folding and dimer for-
mation, but that the interchain disulfide bonds are crucial to preserve the functional
dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first
common step followed by stabilization through the formation of interchain disulfide
bonds.

Introduction
The signal transducer and activator of transcription 3 (STAT3) is a member of a family of seven
closely related proteins that relay signals from activated cytokines and growth factor receptors in the
plasma membrane to the nucleus, in which they regulate gene transcription [1–3]. The domain’s
arrangement is common to all STATs and encompasses six domains: the N-terminal domain (NTD),
the coiled-coil domain (CCD), the DNA-binding domain (DBD), the linker domain (LD), the Src
homology 2 domain (SH2), and the transcription activation domain (TAD) at the carboxy-terminus
(Figure 1) [4,5]. In addition to full-length proteins, several shorter proteins exist, arising from alterna-
tive splicing and proteolytic process [6].
According to the canonical pathway, STAT3 is activated in response to a wide range of growth

factors and cytokines by phosphorylation at the specific tyrosine residue (Tyr705) located near the
carboxy-terminal domain. This activation step requires receptor-associated protein tyrosine kinases of
the JAK or Src family. On activation, the phosphorylated STAT3 (pSTAT3) molecules dimerize
through the interaction of SH2 domain and translocate from the cytoplasm to the nucleus. The dimer
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binds to target DNA motifs and promotes the expression of a large variety of genes, encoding mediators crucial
for the classic physiological acute phase response or involved in a variety of critical cell functions, including dif-
ferentiation, proliferation, apoptosis, angiogenesis, metastasis, and immune response [7–9]. Several post-transla-
tional modifications, such as S-glutathionylation, methylation, acetylation, and S-nitrosylation, have also been
identified for STAT3; some are believed to control dimerization, but others affect the nuclear import/export or
DNA binding [10–14]. Although STAT3 activation normally leads to the physiological response, deregulation
of this transduction cascade could promote tissue damage and could be directly or indirectly involved in differ-
ent inflammatory-related diseases [15–19]. Furthermore, accumulating evidence shows that STAT3 is overex-
pressed and constitutively activated in several human cancers [5,20,21]. The abnormal constitutive activation of
STAT3 stimulates its own transcription, causing an increase in unphosphorylated STAT3 (U-STAT3), which
drives the expression of a set of genes distinct from those activated by pSTAT3, thus contributing to tumorigen-
esis [22,23]. Although it was initially reported that U-STAT3 is monomeric in its latent state, several studies
indicate the presence of dimeric or higher molecular weight complexes, termed ‘statosome’, in cell extracts or
in in vitro studies [24,25]. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasmic and
nuclear compartments, and binds to DNA, but it is not clear how U-STAT3 drives genes transcription. Yang
et al. [26] described that U-STAT3 binds to unphosphorylated NFκB (U-NFκB), in competition with IκB, and
the resulting U-STAT3/U-NFκB complex accumulates in the nucleus with the help from the nuclear localiza-
tion signal of STAT3 and activates a subset of NFκB-dependent genes. Previously, using 100-fold molar excess,
the U-STAT3 core (lacking the NTD) was shown to bind directly to a GAS consensus sequence and also to
AT-rich hairpin and cruciform DNA structure in the monomeric as well as in the dimeric form [27]. Although
a number of reports describe the active role of U-STAT3 in oncogenesis in addition to pSTAT3, the U-STAT3
functional pathway still needs to be elucidated. Structural studies on U-STAT3 dimerization are necessary to
clarify the conformational changes, regulating its nuclear translocation and DNA binding.
In this report, we describe the molecular mechanism of U-STAT3 dimerization in the recombinant purified

form. We identified the presence of two intermolecular disulfide bridges linking Cys367 and Cys542 and
Cys418 and Cys426, respectively. Then, we investigated U-STAT3 stability using biophysical approaches
showing that dimerization of U-STAT3 is crucial for DNA-binding activity. Two double mutants, constructed
by changing either Cys pair into Ser residues, demonstrated that the absence of the Cys367–Cys542 disulfide
completely abolishes U-STAT3 DNA-binding ability. Finally, on the basis of our results, we propose a
multistate equilibrium process for U-STAT3 dimerization.

Experimental procedures
Reagents
All chemicals used throughout the present study were of the highest analytical grade, purchased from Sigma
(Milan, IT), unless otherwise specified.

Expression and purification of wild-type and mutant U-STAT3
The full-length cDNA coding for human STAT3 (STAT3α) cloned on a pOTB-STAT3 vector was purchased
from ImaGENES. STAT3α expression construct coding for aminoacid residues 124–723 (U-STAT3; Figure 1)
was amplified by polymerase chain reaction and cloned into the Sal I-Not I site of the expression vector

Figure 1. Structure of U-STAT3.

Schematic representation of the six domains of STAT3, NTD, CCD, DBD, LD, an SH2, and TAD. A tail segment containing the

phosphorylation site Y705 is located between the SH2 and TAD domains. The construct used (U-STAT3) comprises residues

124–723 and lacks the N-terminal co-operativity domain as well as the C-terminal transactivating domain.
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pGEX4T1 (GE Healthcare), and C367/542S and C418/426S U-STAT3 mutants were generated by QuikChange
site-directed mutagenesis kit (Stratagene) and cloned into the Sal I-Not I site of the expression vector
pGEX4T1. The U-STAT3 plasmids obtained were transformed into the Escherichia coli strain BL21 (DE3, New
England BioLab, Inc.). Recombinant clones were analyzed by DNA sequence. The recombinant proteins were
purified by Glutathione Chromatrix™ ( Jena Bioscience) and eluted in 20 mM Tris–HCl, pH 8.5, and 150 mM
NaCl [11].

Size-exclusion chromatography
The analysis of the aggregation profiles of U-STAT3 was performed with a Superdex 200 HR 10/300 column
(GE-Healthcare), connected to a ÄKTA-FLPC purifier system (GE-Healthcare) and equilibrated with 20 mM
Tris–HCl, pH 5.0, or 8.5/150 mM NaCl buffer. The column was calibrated with six molecular mass standards
(ferritin 420 kDa; aldolase 158 kDa; bovine serum albumin 66 kDa; lactoalbumin 45 kDa; carbonic anydrase
29 kDa; and RNAsi 13.7 kDa).
Approximately 100–500 μL of U-STAT3 (0.5–1 mg/ml) were incubated under different experimental condi-

tions and centrifuged (20 000 × g, 4°C, 10 min) to discard large aggregates. The supernatant was then injected
onto the column and eluted at a flow rate of 0.12–0.15 ml/min. The analysis of the patterns obtained and meas-
urement of the areas of the peaks were performed with the Unicorn 5.01 Software (GE Healthcare).

STAT3/JAK2 kinase assay
STAT3/JAK2 ( Janus kinase 2) kinase assay was performed using recombinant JAK2 active protein (Upstate
Biotechnology), as described elsewhere [11,28,29], with slight modification. Briefly, kinase reactions were per-
formed by incubating 1 mg of U-STAT3 with 10 ng of JAK2 protein in 30 ml of kinase reaction buffer (20 mM
Tris–HCl, pH 7.5, 50 mM MgCl2, and 100 mM ATP). Samples were incubated at 20°C for 10 min within the
linear reaction range, and reactions were stopped by the addition of reducing SDS sample buffer. Samples were
then boiled, separated by SDS–PAGE, and immunoblotted with anti-pTyr705 STAT3 antibody (Cell Signaling
Technology). To verify the autophosphorylation of JAK2, membranes were rehybridized with anti-pTyr1007/1008

JAK2 antibody (Millipore). After being stripped, the membranes were rehybridized with anti-STAT3 K-15 anti-
body (Santa Cruz Biotechnology) and anti-JAK2 antibody (Cell Signaling Technology).

Electrophoretic mobility shift assay
The DNA-binding activity of U-STAT3 was assayed with a 32P-labeled M67 probe (50-gtcgaCATTTCCC
GTAAATCg-30). The probe was prepared by the end-labeling of double-stranded oligonucleotides with [32P]ATP
and T4-polynucleotide kinase. U-STAT3 (0.1 mM) was incubated with 2–5 × 104 cpm of 32P-labeled double-
stranded oligonucleotides in binding buffer containing 20 mM HEPES, pH 7.9, 50 mM KCl, 0.1 mM EDTA, 2 mg
of poly(dI-dC), and 1 mg of salmon sperm DNA. Products were fractionated on a nondenaturing 5% polyacryl-
amide gel. Gels were dried and auto-radiographed, and the intensity of hybridization was quantified using the
public domain NIH Image 1.61 program (developed at the U.S. National Institutes of Health and available on
http://rsb.info.nih.gov/nih-image/). To control the DNA-binding specificity, a scrambled M67 sequence was used.

Mass spectrometry analysis
The protein band, showing the electrophoretic mobility compatible with U-STAT3 dimer on a nonreducing gel,
was excised from the gel, destained by washing with acetonitrile and 50 mM ammonium bicarbonate, and hydro-
lyzed with 20 ng of trypsin in 50 mM ammonium bicarbonate, pH 8.0, at 37°C overnight. The peptide mixture
was extracted from the gel by acetonitrile and 0.2% formic acid washing and dried in a speed vac system. It was
then directly analyzed by MALDI-MS onto a 4800 plus MALDI TOF–TOF mass spectrometer (ABI SCIEX)
equipped with a reflectron analyzer and used in delayed extraction mode with 4000 Series Explorer, v3.5
Software. An aliquot of the same peptide mixture was treated with 50 mM DTT in 50 mM ammonium bicarbon-
ate, pH 8.0, at 37°C for 1 h, to reduce disulfide bonds. The peptide mixture was then acidified and directly
analyzed by MALDI-MS.
For MALDI analysis, 0.5 ml of each peptide mixture was mixed with an equal volume of α-cyano-

4-hydroxycinnamic acid as matrix (10 mg/ml in 0.2% TFA in 70% acetonitrile), loaded onto the metallic
sample plate, and air-dried. Mass calibration was performed with the standard mixture provided by the manu-
facturer. MALDI-MS data were acquired over a 600−6000m/z mass range in the positive ion reflector mode.
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Dynamic light scattering
Dynamic light scattering (DLS) measurements were performed on the samples of monomeric U-STAT3 as
described recently [30] in 20 mM Tris–HCl, pH 8.5, 150 mM NaCl frozen immediately after their purification
with size-exclusion chromatography (SEC). In brief, a Zetasizer Nano-S (Malvern Instruments) and polystyrene
low volume disposable sizing cuvettes (ZEN0112) were used for the experiments. Viscosity and refractive index
were set at 0.8872 cP and 1.330 (default values for water), respectively; temperature was set to 10°C, with
10 min equilibration time. The measurement angle was 173° backscatter, and the analysis model was set to
multiple narrow modes. For each measurement, a minimum of 30 determinations were performed, each con-
sisting of 12–16 repetitions. The same sample was stored at 10°C between subsequent measurements. Each
recording lasted ∼2 h, and experiments were run for 4 days in the morning and in the afternoon, with an inter-
val of ∼4 h between subsequent experiments run on the same day.

Circular dichroism spectroscopy and thermal denaturation studies
Circular dichroism (CD) spectroscopy studies were performed essentially as described recently for U-STAT3
[11]. A Jasco V-710 spectropolarimeter equipped with a Peltier-type thermostated cell holder was used to
record both near-UV (250–320 nm; 1-cm cuvette) and far-UV spectra (200–250 nm; 0.1 cm cuvette) of mono-
meric and dimeric U-STAT3, right after separation by SEC. Spectra were recorded at 25°C at a scan rate of
50 nm/min, bandwidth of 1 nm, and integration time of 4 s. Five spectra accumulations were averaged for each
sample.
Thermal denaturation of both monomeric and dimeric U-STAT3 was monitored between 10 and 96°C,

using the same conditions as for the far-UV spectra. The ellipticity signal at 208 nm (θ208) was recorded at a
scan rate of 1°C/min and at a response time of 4 s, using a 0.1 cm quartz cuvette.
The analysis of thermal denaturation curves was performed for each sample, assuming a two-state transition

process. Complete unfolding was achieved for both monomeric and dimeric U-STAT3 under the experimental
conditions used, as shown by the residual CD signal resulting after thermal denaturation (results not shown).
Data were fitted according to a four-parameter Hill sigmoid:

y ¼ bn þ jbn � bujTH

TH
m þ TH

where bn is the baseline value (θ208) of the native protein, bu is the baseline value of the unfolded protein, T is
the temperature, H is the Hill coefficient, and Tm is the melting temperature.

Surface plasmon resonance
The kinetics of U-STAT3 dimerization was examined by surface plasmon resonance (SPR), using SensQ
Pioneer biosensor system at a controlled temperature of 15°C. The SEC-purified U-STAT3 monomer (‘ligand
STAT3’, LSTAT3) was dissolved in sodium acetate buffer, pH 5.0, and immobilized onto COOH5 sensor chip
(Sens.Q Technologies), by standard amine-coupling reaction up to responses of 5000 resonance units (RU). A
reference flow cell was prepared by the same procedure in the absence of protein. Increasing concentrations
(0.05 × 10−6 up to 2.5 × 10−6 M) of recombinant U-STAT3 (‘analyte STAT3’, ASTAT3) were injected at a flow
rate of 10 ml/min for 30 min in running buffer (20 mM Tris, pH 8.5, 150 mM NaCl), and the dissociation of
bound proteins was monitored for 60 min. For all analyses, reference flow cell sensorgrams were subtracted
from ligand flow cell sensorgrams.
The association and dissociation rate constants ka and kd, respectively, for the

LSTAT3–ASTAT3 complexes,
were determined by direct curve fitting of the sensorgrams, assuming a 1:1 Langmuir model according to eqns
1 and 2, relative to the association and dissociation phases, respectively:

RU ¼ RUt0 þ ðka[C]RUmaxÞð1� e�ðka½C�þkdÞtÞ=(ka[C]þ kd) (1)

RU ¼ �kdRUt0�e�kd(t�t0) (2)

where RU is the signal response; RUmax, the maximum response level; RUt0, the response at the beginning of
the dissociation phase; and [C], the molar concentration of ASTAT3. The dissociation equilibrium constant,
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KD, was calculated as kd/ka. The dissociation phase was analyzed first, and the obtained kd value (eqn 2) was
kept constant and used in eqn 1.
Kaleidagraph software (version 6.0; GraphPad Software, Inc.) was used for the analysis of SPR data.

Results
STAT3 dimerizes in the absence of tyrosine phosphorylation
To evaluate the dimerization and aggregation propensity of recombinant U-STAT3, we performed SEC follow-
ing protein incubation under different experimental conditions, including temperature, protein concentration,
time, and pH.
The protein extensively aggregates at temperatures exceeding 10°C, thus several attempts were performed

to settle the right compromise to obtain a large enough amount of dimer and to avoid extensive U-STAT3
aggregation. We evaluated the effect of U-STAT3 dimerization tendency at 10°C in 20 mM Tris–HCl, pH 8.5,
150 mM NaCl until 5-day incubation time. As shown in Figure 2A, U-STAT3 (1 mg/ml) eluted at t0 as a
major peak at ∼15.4 ± 0.1 ml corresponding to a monomer with an apparent MW of ∼80 kDa (solid line)
preceded by a small shoulder. The major peak (M) and the preceding shoulder (D) were analyzed by nonre-
ducing SDS–PAGE and immunoblotted using anti-STAT3 antibody (Figure 2A, insert). After 24 h incuba-
tion, the shoulder increased and eluted at ∼14.3 ± 0.1 ml, corresponding to a MW approximately twice that
of the monomer. The shoulder D progressively increased if the incubation time is extended to 3 days, and
after 5 days also larger aggregates were detected, together with species not retained by the column
(Figure 2A). Following several attempts, the best compromise to obtain a certain amount of dimeric
U-STAT3, but avoiding extensive aggregation, was established, protein concentration 1 mg/ml, temperature
10°C, and 3-day incubation time.
To clarify the molecular mechanism of U-STAT3 dimerization, we studied the monomer/dimer equilibrium

at different pH values, which probably regulate the reactivity of cysteine residues and might affect the intermo-
lecular disulfide formation. U-STAT3 was incubated under the previously defined conditions in 20 mM sodium
acetate buffer, pH 5.5, containing 150 mM NaCl. As shown in Figure 2B, U-STAT3 eluted as a single peak at
15.5 ± 0.1 ml at pH 5.5, indicating that the protein is almost totally present in the monomeric form, while at
pH 8.5 a consistent amount of dimeric form was present. The pH dependence of the monomer/dimer equilib-
rium suggests that intermolecular disulfide bridges might promote and stabilize the dimer formation.

Time course of U-STAT3 dimerization monitored by DLS
The results obtained with SEC (Figure 2A) suggested that dimerization of U-STAT3 might be a dynamic
process involving specific time frames. To explore this possibility, we performed DLS experiments by moni-
toring the size of U-STAT3 species on a regular basis over a 3-day time frame, at 10°C (Supplementary
Figure S1). The suspension showed satisfactory colloidal properties and appeared to be substantially mono-
disperse during the first 2 h (Supplementary Figure 1SA), with a high intensity peak corresponding to a
hydrodynamic diameter d1 = 12.4 ± 0.4 nm, involving ∼87% of the scattered light intensity and fairly low
polydispersity index (pdI = 0.24). Already in the following 2 h, the average size of the suspension increased,
and a population with higher hydrodynamic diameter appeared (Supplementary Figure S1B). Interestingly,
both the size of the most intense peak (d1 = 16.0 ± 0.9 nm) and the polydispersity index (pdI = 0.42)
increased. The same trend was observed after overnight incubation (Supplementary Figure S1C; d1 = 18.2 ±
1.1 nm; pdI = 0.41). However, starting from the second day, the size distribution appeared generally broader
(Supplementary Figure S1D) with the onset of intermediate size peaks, that is, 20–100 nm (as shown in the
plot of the mean size distribution overlapped to individual recordings in Supplementary Figure S1K). The
size distribution did not significantly change after a second and a third overnight incubation steps
(Supplementary Figure S1E–G). The addition of 15 mM DTT, that is, in slight excess to U-STAT3 concentra-
tion (∼10 mM), did not significantly modify the size distribution (Supplementary Figure S1H). To estimate
the size of the most intense peaks, the sample underwent a mild centrifugation step (20 000 × g, 4°C,
15 min), resulting in a predominant peak (Supplementary Figure S1I) corresponding to a hydrodynamic
diameter d1 = 18.2 ± 1.2 nm, with an intensity of 77.4% and fairly low pdI (0.26). Interestingly, further add-
ition of DTT to a final concentration of 2 mM, without any further centrifugation, significantly decreased the
size of the predominant peak (d1 = 13.9 ± 1.5 nm), bringing it back to values essentially comparable to the
initial monomeric conditions (Supplementary Figure S1A,K).
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The results of DLS experiments are consistent with a dynamically slow formation of STAT3 oligomers under
the conditions tested. Moreover, the clearly visible effect of DTT on the size distribution of U-STAT3 species
strongly suggests the involvement of disulfide bridges in the dimerization/oligomerization process.

Figure 2. SEC analysis of U-STAT3 self-association.

(A) Time-dependence of U-STAT3 self-association. Protein (1 mg/ml) was incubated at 10°C in 20 mM Tris–HCl buffer, pH 8.5,

containing 150 mM NaCl. Aliquots of 200 ml were withdrawn at times indicated in the panel, centrifuged, and supernatants

were injected onto a Superdex 200 HR 10/300 column equilibrated with the same buffer. Insert: nonreducing SDS–PAGE and

western blot with anti-STAT3 antibody analyses of monomer (M) and dimer (D) U-STAT3. Bands at ∼67 and 130 kDa were

revealed and assigned to U-STAT3 monomer and dimer species, respectively. (B) pH-dependence of U-STAT3 self-association.

Protein (1 mg/ml) was incubated at 10°C either in 20 mM sodium acetate (pH 5.5, solid line) or in 20 mM Tris–HCl buffer (pH

8.5, dashed line), both containing 150 mM NaCl. Following 3-day incubation, samples were centrifuged, and 200 ml of the

supernatant were injected onto a Superdex 200 HR 10/300 column.
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Interchain disulfide bonds are involved in STAT3 dimer stabilization
To better characterize the U-STAT3 dimerization, the dimeric fraction eluted from SEC was collected and
divided into two aliquots. The first one was immediately incubated for 4 h in ice with DTT in a 1/1.2 protein/
reducing agent molar ratio and then reexamined by SEC. The second aliquot was directly reinjected onto the
column (Figure 3A, dashed line). In the presence of DTT, U-STAT3 eluted as a highly predominant peak at a
volume corresponding to the MW of the monomeric form with a minor residual of dimeric peak (Figure 3A,
solid line). The untreated portion of the dimeric U-STAT3 fraction exhibited the expected elution volume
corresponding to the protein dimeric form. These data further provide strong evidence for the presence of
interchain disulfide bonds in the U-STAT3 dimeric form.
Previously, the U-STAT3 core had been shown to bind directly to a GAS or cfos consensus sequence [27,31].

Hence, the DNA-binding activity of both monomeric and dimeric U-STAT3 was evaluated here by

Figure 3. Redox stability and functional analysis of U-STAT3 dimer.

(A) Effect of DTT on dimeric U-STAT3. The dimeric U-STAT3 fraction eluted from SEC was collected and divided into two

aliquots. The first one was immediately reinjected onto the Superdex 200 HR 10/300 column (dashed line), while the other was

incubated with DTT for 4 h and then was injected in the same column (solid line). (B) DNA-binding activity of U-STAT3.

U-STAT3 dimer (lane 1), U-STAT3 monomer (lane 2), C367/542S mutant (lane 3), and C418/426S mutant (lane 4) were

incubated with M67 dsDNA and analyzed by EMSA. U-STAT3 dimer was also incubated with M67 dsDNA in the presence of

10 mM DTT (lane 8). As a negative control, U-STAT3 dimer (lane 5), C367/542S mutant (lane 6), and C418/426S mutant (lane 7)

were incubated with M67 scramble dsDNA. The image is representative of four independent experiments.
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electrophoretic mobility shift assay (EMSA) analysis using M67 dsDNA that is a modified cfos-inducible
enhancer. Figure 3B reveals that dimeric U-STAT3 was able to bind DNA (Figure 3B, lane 1), whereas mono-
meric U-STAT3 did not show any DNA-binding capability (Figure 3B, lane 2). The addition of 1 mM DTT to
the binding buffer noticeably decreased the DNA-binding activity of dimeric U-STAT3, thus demonstrating the
contribution of interchain disulfide bonds in U-STAT3 functional activity (Figure 3B, lane 8).

Interchain disulfide bonds assignment
The identification of cysteine pairings in U-STAT3 dimer was carried out using the MALDI mapping strategy
[11]. The dimeric fraction of recombinant U-STAT3 protein purified by SEC was loaded onto a nonreducing
polyacrylamide gel to further purify the dimer from monomer contamination. The protein band, showing the
electrophoretic mobility expected for U-STAT3 dimer, was excised from the gel and digested with trypsin. The
resulting peptide mixture was extracted from the gel and directly analyzed by MALDI-MS. Most of the signals
recorded in the mass spectra were mapped onto the anticipated U-STAT3 sequence. However, two signals
occurring at m/z 3565.9 and 3733.9, respectively (Figure 4), could not be assigned to any peptide present in the
protein sequence and were then tentatively considered as putative S–S-containing fragments. The signal at m/z
3565.8 was interpreted as arising from peptides (366–382) and (532–548) linked by a disulfide bond between
Cys367 and Cys542. Analogously, the MH+ signal at m/z 3733.9 was assigned to a two-peptide cluster involving
fragments (418–423) and (424–451) linked by the disulfide bond between Cys418 and Cys426. Table 1 reports
the results of the MALDI analysis of the peptides containing disulfide bond(s).
These findings were confirmed after reexamining by MALDI-MS the peptide mixture resulting after reduc-

tion with DTT, which showed the disappearance of the S–S bridges containing signals (data not shown).

Dimerization of U-STAT3 mutants
The role played by the identified cysteines in U-STAT3 dimerization and the DNA-binding activity was evalu-
ated by generating two double mutants in which both the two cysteine pairs involved in S–S bonds were substi-
tuted with serine. As demonstrated by in vitro tyrosine kinase assay, the tyrosine phosphorylation site was not
affected in the two mutants, thus indicating that the mutations did not alter the gross conformation of the
protein (Supplementary Figure S2). As expected, SEC analyses clearly indicated that both U-STAT3 mutants
were present in the dimeric form, due to the presence of the remaining S–S bridge (Figure 5A,B, solid line). In

Figure 4. Partial MALDI-MS spectra of the tryptic digest from STAT3 dimeric form.

The dimeric U-STAT3 fraction eluted from SEC was digested with trypsin, and the resulting peptide mixture was directly

analyzed by MALDI-MS. The mass signals at 3565.9 and 3733.9 were associated to the peptides pairs 366–382 and 532–548

and 418–423 and 424–451, respectively, jointed by the disulfide bridges Cys367–Cys542 and Cys418–Cys426, respectively.
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the presence of DTT, in fact, both mutants eluted as a highly predominant peak associable to a MW corre-
sponding to the monomeric form (Figure 5A,B, dot line). However, subtle differences could be detected in the
two mutants. The mutant lacking the Cys367–Cys542 disulfide bond produced a major unresolved peak
(Figure 5A), whereas the absence of the Cys418–Cys426 bridge gave rise to an elution profile similar to the one
shown by wild–type (WT) U-STAT3, although with a definitely minor amount of dimeric form. On the basis
of these results, we speculate that the lack of Cys367–Cys542 intermolecular disulfide should trigger structural
changes that alter the overall conformation of the dimeric species.
The DNA-binding capability of U-STAT3 mutants was investigated by EMSA analyses. According to our

hypothesis, only the DNA-binding capability of U-STAT3 lacking the Cys367–Cys542 disulfide was completely
abrogated (Figure 3B, lane 3), suggesting an essential role of this disulfide bridge in conferring to dimeric
U-STAT3 the proper conformation to bind DNA.
On the other hand, U-STAT3 lacking the Cys418–Cys426 disulfide bridge still retains a little DNA-binding

ability due to the presence of small amount of U-STAT3 dimer (Figure 3B, lane 4), again underlining the
importance of Cys367–Cys542 S–S for the stability of a functional dimer.

STAT3 monomer and dimer have similar secondary and tertiary structure and
thermal stability
To check for structural differences between monomeric and dimeric U-STAT3 forms, the fractions collected
from SEC were analyzed by CD spectroscopy. As shown in Supplementary Figure S3, no substantial differences
could be observed in the spectra both in the far- (200–250 nm) and in the near-UV (250–320) range, indicating
that dimeric U-STAT3 preserves monomer-like secondary and tertiary structures under the tested conditions.
To investigate the thermal stability of both monomeric and dimeric U-STAT3 species, we took advantage of

the high α-helix content of the protein, which is reflected by the typical minima in the far-UV CD spectra at
208 and 222 nm (Supplementary Figure S3). The ellipticity at 208 nm (θ208) was monitored also at increasing
the temperature from 10 to 96°C (Figure 6). Monomeric and dimeric U-STAT3 showed very similar thermal
denaturation profiles. Both forms exhibited a sigmoidal trend compatible with a two-state unfolding process,
with very similar melting temperatures (Tmon

m ¼ 57:9°C and Tdim
m ¼ 59:1°C) and very high Hill coefficients

(26.5 for the monomer and 36.9 for the dimer), indicative of a highly cooperative transition process occurring
without the involvement of partly folded intermediates. This finding, together with the very similar spectro-
scopic features observed for the monomeric and dimeric forms of U-STAT3 (Supplementary Figure S3), sug-
gests that the thermal unfolding of the monomers within the covalently bound dimer essentially occurs
independently of one another.

Association/dissociation kinetics of U-STAT3 monomers investigated by
surface plasmon resonance
To characterize the specific binding event occurring between U-STAT3 monomers, SPR was performed on 20
different injections, assuming a simple dimerization scheme in which homodimerization was modeled as a
pseudo-first-order process, while the dissociation reaction as a first-order process. The SEC-purified U-STAT3
monomer (ligand STAT3, LSTAT3) was immobilized on a sensor chip at 5000 RU (corresponding to ∼8 ng of
protein), and the SEC-purified U-STAT3 monomer (analyte STAT3, ASTAT3) was used as the analyte. The
concentration of ASTAT3 ranged between 0.05 and 3 mM. Interestingly, within a broad range of ASTAT3 con-
centrations (0.05 mM up to 0.25 mM), the proposed kinetic model nicely fitted the experimental data
(Figure 7), leading to relatively low rate constants for both association (ka = 4.19 × 104 ± 0.98 × 104 M−1 s−1) and
dissociation kinetics (kd = 3.94 × 10−4 ± 0.13 × 10−4 s−1), thus resulting in an average apparent affinity, KD =

Table 1 MALDI-MS analysis of disulfide bridges containing peptides from the tryptic digest of dimeric
U-STAT3
The theoretical MH+ values of reduced peptides are also indicated.

Observed MH+ Theoretical MH+ of reduced peptides Peptides S–S

3565.8 1761.9, 1806.9 (366–382) + (532–548) C367–C542

3733.9 563.2, 3173.6 (418–423) + (424–451) C418–C426
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9.40 nM. However, higher concentrations of ASTAT3, in the range 0.4 −3 mM, resulted in association paths that
were incompatible with the proposed mechanism, as neither a clear dependence on the analyte concentration
nor saturation after injection could be observed in any case (data not shown).
At the tested SPR experimental conditions, the protein binding detected mimics the dimerization process mea-

sured as the ability of ASTAT3 to bind to the immobilized LSTAT3, but it cannot reveal the formation of disulfide
bridges, an event whose detection requires conditions and time frames that are unsuitable for on-chip analysis.

Discussion
Recent studies demonstrate that, besides pSTAT3, also U-STAT3 can dimerize, translocate to the nucleus, and
bind to the STAT3-binding sites, thereby activating the transcription of target genes. In the present paper, the

Figure 5. Dimerization of U-STAT3 mutants.

The two U-STAT3 double mutants (1 mg/ml) were incubated at 10°C in 20 mM Tris–HCl buffer, pH 8.5, containing 150 mM

NaCl. After 3-day incubation, samples were centrifuged, and 200 ml of the supernatants were injected onto a Superdex 200 HR

10/300 column and compared with WT. For S–S bridges reduction, samples were treated with 2 mM DTT for 4 h and then

reinjected onto the column. (A) The C367/542S U-STAT3 mutant and (B) the C418/426S U-STAT3 mutant.
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biochemical properties of purified recombinant U-STAT3 were investigated to understand the molecular
mechanisms underlying U-STAT3 dimerization. The STAT3 core (residues 124–723) lacking the NT-domain
was expressed in E. coli strain BL21, and the identity of the eluted proteins was confirmed by immunoblot
analysis that results in a major protein band of ∼67 kDa and by MALDI mapping. The correct folding and
biological activity were assessed by CD measurements and protein kinase assay [11]. Nonreducing SDS–PAGE,
gel filtration, and DLS experiments suggested the existence of intermolecular disulfide bond linking two
U-STAT3 monomers. Mass mapping experiments confirmed these data, indicating the occurrence of two
intermolecular S–S bridges joining Cys367–Cys542 and Cys418–Cys426, respectively. The presence of these
disulfides was demonstrated to largely contribute to the structure and stability of U-STAT3 dimer, as the
dimeric form rapidly dissociates on reduction in the S–S bonds.

Figure 6. Thermal denaturation of U-STAT3 monitored by CD spectroscopy.

Thermal denaturation of both monomeric and dimeric U-STAT3 in 20 mM Tris–HCl buffer, 150 mM NaCl, pH 8.5, was followed

by monitoring the ellipticity signal at 208 nm over a 10–96°C temperature range. Protein concentration was ∼1 mg/ml for the

monomer and 0.5 mg/ml for the dimer. Quantitative data obtained by fitting the experimental curve to a sigmoidal function led

to the following melting temperatures, corresponding to half-maximal denaturation conditions: Tmon
m ¼ 57:9WC (Hill coefficient,

h = 26.5) for the monomer and Tdim
m ¼ 59:1°C (h = 36.9) for the dimer.

Figure 7. Kinetic analysis of U-STAT3 dimerization.

(A and B) Reference subtracting association and dissociation sensorgram corresponding to 125 nM of AU-STAT3. Data were

fitted according to a simple concerted model, which separately considers the dissociation (kd) and the association processes

(ka) (black lines). The obtained kinetic parameters for this example are kd = 4.13 × 10−4 s−1 and ka = 3.2 × 104 M−1 s−1. Mean and

standard deviations for kinetic parameters were assessed from 20 different experiments in which [AU-STAT3] varied from 0.05

to 0.3 mM.
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Dimerization is crucial for the biological activity of U-STAT3, as only the dimeric form is able to bind DNA
and to promote gene expression. In this respect, the interchain disulfide bridges play a fundamental role as they
substantially contribute to the stabilization of the protein dimer. In particular, the Cys367–Cys542 disulfide
bridge has been shown here to be critical for U-STAT3 DNA-binding activity. Mutation of these two Cys resi-
dues completely abolished the DNA-binding capability of U-STAT3, although the protein is still in the dimeric
form, indicating that the absence of this S–S bridge might induce structural changes altering the overall con-
formation of the dimeric species. Recently, we reported that modification of the intracellular redox state
induces inhibition of STAT3 activity through the reversible oxidation of thiol groups and identified two glu-
tathionylated cysteine residues, Cys328 and Cys542, within the DBD and the LD, respectively [11], and further
partially glutathionylated Cys367 and Cys426 (unpublished data). The involvement of the same cysteine resi-
dues in the disulfide bond-mediated U-STAT3 dimerization suggests that these S–S bridges could stabilize the
dimer formation in an in vivo system, thus originating the correct conformation for DNA binding. Disulfide
bond formation is rather a rare event within the reducing environment of cells. The recent discovery of a
number of cytosolic proteins that use specific and reversible disulfide bond as a functional switch suggests that
this view needs to be revised. Redox-sensitive proteins possess cysteine residues that exist as thiolate anions at
neutral pH due to the lowering of their pKa values by charge interactions with neighboring amino acid resi-
dues, and are therefore more vulnerable to oxidation [32]. In the cytoplasm, multiple pathways are involved in

Figure 8. Schematic representation of U-STAT3 dimerization.

The three-state and four-state pathways proposed for U-STAT3 dimerization process and leading to the same active product

are depicted. Our data cannot discriminate between the two proposed pathways.
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the reduction of disulfide bonds that occur as part of the catalytic cycle of a variety of metabolic enzymes.
Recent reports pointed out that STAT3 exists in the cytosol in complex with the disulfide isomerase ERP57 and
advanced the occurrence of a sophisticated redox regulation of the protein activity. Anyway, it should be noted
that some conflicting results have also been reported on STAT3/ERp57 interaction and function [25,33–36].
Thus, our findings upon U-STAT3 dimer stabilization through S–S interchain bond formation open up new
scenarios on STAT3 signaling, suggesting that the chaperone ERp57 may regulate signaling by sequestering
inactive and activated STAT3.
In a very recent work, Sgrignani et al. [37] used an integrated modeling approach based on protein–protein

docking and molecular dynamics simulations to predict the three-dimensional architecture of U-STAT3
dimers, resulting in two distinct, noncovalent dimers with significantly different interfaces. The spatial distribu-
tion of Cys328, Cys542, Cys367, and Cys426 in the resulting computational models is not compatible with the
formation of the two disulfide bonds observed in the present study. However, it should be noted that the three-
dimensional structure of the two predicted U-STAT3 dimers is mutually exclusive and involves substantially
different regions of the NT- and SH2-domains, thus suggesting that, at least in the first steps, the dimerization
of U-STAT3 occurs by noncovalent interactions that may involve a rather plastic interface. This concept is fully
in line with our results, as our spectroscopic investigations confirmed that noncovalent interactions are suffi-
cient for proper folding and dimer formation, but that interchain disulfide bonds are needed to preserve and
stabilize the functional dimer. Overall, the presented data allow us to propose a reaction scheme for U-STAT3
dimerization in a three-state process by means of two kinetic barriers or in a four-state by means of three
kinetics barriers. The proposed U-STAT3 dimerization process occurs through initial rapid noncovalent inter-
action between U-STAT3 core fragments eventually stabilized by the formation of disulfide bonds (Figure 8).
It has been reported that STAT3 performed its function through protein–protein interactions, many of

which depend on NT-domains and that NT-domain interactions are fundamental for dimer formation and sta-
bility [38,39]. Our data do not exclude the importance of initial noncovalent NT–NT domains’ interaction in
STAT3 dimer formation, but underline that noncovalent interactions might occur even in the recombinant
protein lacking the NT-domain, suggesting that other regions of U-STAT3 may compensate for the absence of
the dimerizing interactions normally contributed by the NT-domain. Thus, further studies are needed to clarify
the molecular mechanism of U-STAT3 dimerization.
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