9 research outputs found

    Remote Colorimetric and Structural Diagnosis by RGB-ITR Color Laser Scanner Prototype

    Get PDF
    Since several years ENEA's Artificial Vision laboratory is involved in electrooptics systems development. In the last period the efforts are concentrated on cultural heritage remote diagnosis, trying to develop instruments suitable for multiple purposes concerning restoration, cataloguing, and education. Since last five years a new 3D (three-dimensional) laser scanner prototype (RGB-ITR) based on three amplitude-modulated monochromatic laser sources mixed together by dichroic filters is under development. Five pieces of information per each sampled point (pixel) are collected by three avalanche photodiodes and dedicated electronics: two distances and three target reflectivity signals for each channel, red, green, and blue. The combination of these pieces of information opens new scenarios for remote colorimetry allowing diagnoses without the use of scaffolds. Results concerning the use of RGB-ITR as colorimeter are presented

    Radiation Tolerant 3D Laser Scanner for Structural Inspections in Nuclear Reactor Vessels and Fuel Storage Pools

    Get PDF
    Accurate and timely assessment of displacements and/or structural damages in nuclear reactor vessels' components is a key action in routine inspections for planning maintenance and repairs but also in emergency situations for mitigating consequences of nuclear incidents. Nevertheless, all these components are maintained underwater and reside in high-radiation fields thus imposing harsh operative conditions to inspection devices which must cope with effects such as Cerenkov radiation background, Total Ionizing Radiation (TID), and occlusions in the detectors' field of view. To date, ultrasonic techniques and video cameras are in use for inspection of components' integrity and with measurements of volumetric and surface crack opening displacements, respectively. The present work reports the realization of a radiation tolerant laser scanner and the results of tests in a nuclear research reactor vessel for acquisition of 3D models of critical components. The device, qualified for underwater operation and for withstanding up to 1 MGy of TID, is based on a 515 nm laser diode and a fast-scanning electro-optic unit. To evaluate performances in a significant but controlled environment, the device has been deployed in the vessel of a research reactor operated by ENEA in the Casaccia Research Centre in Rome (Italy). A 3D model of the fuel rods assembly through a cooling water column of 7 m has been acquired. The system includes proprietary postprocessing software that automatically recognizes components of interest and provides dimensional analysis. Possible application fields of the system stretch to dimensional analysis also in spent nuclear fuel storage pools

    A Quadratic Model with Nonpolynomial Terms for Remote Colorimetric Calibration of 3D Laser Scanner Data Based on Piecewise Cubic Hermite Polynomials

    Get PDF
    The processing of intensity data from terrestrial laser scanners has attracted considerable attention in recent years. Accurate calibrated intensity could give added value for laser scanning campaigns, for example, in producing faithful 3D colour models of real targets and classifying easier and more reliable automatic tools. In cultural heritage area, the purely geometric information provided by the vast majority of currently available scanners is not enough for most applications, where indeed accurate colorimetric data is needed. This paper presents a remote calibration method for self-registered RGB colour data provided by a 3D tristimulus laser scanner prototype. Such distinguishing colour information opens new scenarios and problems for remote colorimetry. Using piecewise cubic Hermite polynomials, a quadratic model with nonpolynomial terms for reducing inaccuracies occurring in remote colour measurement is implemented. Colorimetric data recorded by the prototype on certified diffusive targets is processed for generating a remote Lambertian model used for assessing the accuracy of the proposed algorithm. Results concerning laser scanner digitizations of artworks are reported to confirm the effectiveness of the method

    Remote and contactless infrared imaging techniques for stratigraphical investigations in paintings on canvas

    Get PDF
    AbstractIn the analysis of complex stratigraphical structures like painted artefact, infrared (IR) techniques can provide precious information about elements hidden under superficial layers of the artwork, such as pictorial features and structural defects. This paper presents a novel complementary use of reflectographic and thermographic techniques for the survey of three baroque paintings, preserved at the Chigi Palace in Ariccia (Italy). First, the IR-ITR laser scanner prototype has been used for the preliminary and remote near-IR reflectographic survey of the areas where the canvas was located. The resulting map was then used for planning the thermographic and mid-IR reflectographic studies, focusing the analyses on the most interesting areas of one of the paintings, called "La Primavera". The combination of the three imaging techniques revealed several details not visible by the naked eye, such as restored lacunas and pentimenti, demonstrating the validity and complementarity of the proposed combined methodologies

    Laser Scanners for High-Quality 3D and IR Imaging in Cultural Heritage Monitoring and Documentation

    No full text
    Digital tools as 3D (three-dimensional) modelling and imaging techniques are having an increasing role in many applicative fields, thanks to some significative features, such as their powerful communicative capacity, versatility of the results and non-invasiveness. These properties are very important in cultural heritage, and modern methodologies provide an efficient means for analyzing deeply and virtually rendering artworks without contact or damage. In this paper, we present two laser scanner prototypes based on the Imaging Topological Radar (ITR) technology developed at the ENEA Research Center of Frascati (RM, Italy) to obtain 3D models and IR images of medium/large targets with the use of laser sources without the need for scaffolding and independently from illumination conditions. The RGB-ITR (Red Green Blue-ITR) scanner employs three wavelengths in the visible range for three-dimensional color digitalization up to 30 m, while the IR-ITR (Infrared-ITR) system allows for layering inspection using one IR source for analyses. The functionalities and operability of the two systems are presented by showing the results of several case studies and laboratory tests

    >

    No full text
    corecore