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The processing of intensity data from terrestrial laser scanners has attracted considerable attention in recent years. Accurate
calibrated intensity could give added value for laser scanning campaigns, for example, in producing faithful 3D colour models
of real targets and classifying easier and more reliable automatic tools. In cultural heritage area, the purely geometric information
provided by the vastmajority of currently available scanners is not enough formost applications, where indeed accurate colorimetric
data is needed. This paper presents a remote calibration method for self-registered RGB colour data provided by a 3D tristimulus
laser scanner prototype. Such distinguishing colour information opens new scenarios and problems for remote colorimetry. Using
piecewise cubic Hermite polynomials, a quadratic model with nonpolynomial terms for reducing inaccuracies occurring in remote
colour measurement is implemented. Colorimetric data recorded by the prototype on certified diffusive targets is processed for
generating a remote Lambertianmodel used for assessing the accuracy of the proposed algorithm. Results concerning laser scanner
digitizations of artworks are reported to confirm the effectiveness of the method.

1. Introduction

An active area of research in computer graphics involves
the processing of colorimetric data with established and
innovative mathematical methods [1–5]. The development of
the most widespread instrumental survey techniques (topog-
raphy and stereophotogrammetry) has been considerable
and has made both the acquiring and the processing of
a large amount of data possible. Three-dimensional (3D)
laser scanning represents one of the ultimate steps of the
technological progress in the field of morphological survey
and it offers new and important opportunities [6].

The intensity information from terrestrial laser scanners
(TLS) has become an important object of study in recent years
[7, 8], and there are an increasing number of applications that

would benefit from the addition of calibrated intensity data to
the topographic information.

Generally, laser scanner performance, such as accuracy
and detection range, varies with distance, object reflectivity,
and angle of incidence to the reflective surface. The scanner
response may be subject to an input-output nonlinearity that
needs to be modeled. The quality of a rendered laser image
strongly depends on the accuracy of the calibration procedure
used. Accurate calibrated intensity could give added value
for laser scanning campaigns, for example, in generating
faithful 3D colour models of real targets, in making object
recognition, and in classifying easier and more reliable
automatic tools.While studies of TLS radiometric calibration
are sparsely available, to the best of the authors’ knowledge,
research on remote colorimetric calibration started in the last
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few years with the RGB-ITR (Red Green Blue-Imaging
Topological Radar) system [9], a patented 3D colour laser
scanner prototype completely designed and realized at ENEA
laboratories of Frascati (Rome) for cultural heritage purposes.
The advantages of 3D imaging systems in the field of cultural
heritage are now recognized and widely accepted [10–12].
The purely geometric output provided by the majority of
currently available laser scanners is not enough for most
cultural heritage applications [13]. A common practice is to
superimpose textures derived from ordinary digital photos
onto the 3D models generated by most devices. This tech-
nique hasmany drawbacks and limitations in terms of achiev-
able visual quality and accuracy, since the generation and
superimposition of texture images are realised via software
and commercial cameras. Differently from commercial 3D
scanners, the ENEA prototype can simultaneously record for
each investigated point range and RGB colour data. Such
distinguishing feature opens new scenarios and a new class
of problems for remote colorimetry [14].

A standardization of colour information detected by
RGB-ITR system, respecting CIE standards, was already per-
formed in the past with colour calibrations by distance infor-
mation and by MINOLTA spectrophotometer-CM-2600d
[9].These calibrations have assumed a linear relation between
the red, green, and blue back-reflected signals and scene
reflectances at each distance of measurement. The present
study shows that, due to nonlinearities of the optoelectronic
system, this assumption produces undesired effects in the
remote colour measurement of certified diffusive gray tar-
gets (Labsphere Inc.) and proposes a nonlinear calibration
for compensating the input-output characteristics of the
device, providing meaningful and more accurate 3D RGB-
ITR colour images. The improvement gives added value for
laser scanning campaigns, providing intensity data much
more suitable for cataloguing, dissemination, restoration, and
remote diagnosis purposes. The effects of distance and target
reflectance on the recorded intensity along with the devel-
opment of the proposed correction method are analyzed.
The model is capable of representing real, small, and big
surfaces at short and large distances from the scanner. The
implementation is performed with a fast algorithm that uses
a quadratic model with nonpolynomial terms and piecewise
cubic Hermite polynomials with first-order accurate deriva-
tive approximation method. A remote Lambertian model for
assessing the accuracy of the algorithm and several experi-
mental results that demonstrate the effectiveness provided by
the novel calibration procedure are reported.

2. RGB-ITR Colour Detection

The RGB-ITR system is a tristimulus laser scanner proto-
type based on the amplitude modulation [15, 16] of three
monochromatic sources (660 nm, 514 nm, and 440 nm) and
is able to simultaneously collect colour and structure infor-
mation for any investigated sampled surface point in a
working range of about 3–30 meters. This capability makes
colour information as important as range data.

Raw colour data returned by theRGB-ITR simply consists
of a triplet of voltage values. Each value represents the red,
green, or blue light power reflected by a particular surface, as
collected by the receiving optics and revealed by the detector.
The RGB triplets are then processed with a calibration
procedure, which consists in illuminating a movable white
target with the laser beam at fixed steps (e.g., 10 cm) along the
scanning range. Finally, calibrated RGB data is merged with
range information to produce high-quality 3D digitalmodels.

2.1. Linear Calibration. Ideally, a correct colour calibration
procedure should represent the content of a real target 3D
model by reflecting the intrinsic properties of the target sur-
face. Namely, two colorimetrically indistinguishable regions
of the surface should be represented in the model as having
the same colour, independently on the conditions under
which those regions were sounded during the scan, that is,
without being affected by scanning geometry measurement,
ambient light effects, and so forth.

The RGB-ITR colour measuring capabilities are influ-
enced by various factors, well described in [13]. In this
study, the effects produced by the nonlinearities of the
optoelectronic system are illustrated by calibrating certified
Lambertian gray targets of 50%and 20%reflectanceswith raw
colourmeasurements performed on awhite diffusive target at
different distances from the system. These raw detected data
form the calibration curves. Figures 1 and 2 report the calibra-
tion curves and the detected gray target signals as functions
of distance at different ranges from the scanner. The curves
exhibit the same behaviour; that is, they all have a maximum
that can be fixed by varying some optical parameters. The
on-focus distance for these curves corresponds to 𝑑

0
= 4.4m

(curves in Figure 1) and 𝑑
0
= 20.8m (curves in Figure 2),

where approximately all the RGB curves have a maximum.
For 𝑑 > 𝑑

0
the collected power falls down mainly because

of the misalignment of the optical axes and the 1/𝑑2 typical
trend [13]. For 𝑑 < 𝑑

0
, this trend is counterbalanced by the

fact that the receiver intercepts only part of the reflected light,
so the collected power also falls down. As a consequence,
all the calibration curves, their characteristic bell-shape, are
the result of the optical parameters tuned up for maximizing
the signal-noise ratio of the detected voltages and their shape
is independent from distance. Note that, because of the
optoelectronic system features, it is not possible to obtain
the same RGB signals on certified Lambertian targets at all
the distances of measurement. This implies that an accurate
calibration with a certified reference target is necessary for
producing RGB-ITR colorimetric models.

Linear calibration of gray targets is performed by calcu-
lating the ratio between the three RGB signals acquired by
the instrument for each target and the amplitude value on
the three calibration curves selected by the corresponding
distance 𝑑. For each channel 𝜆

𝑖
the measured reflectance

factor of a gray target is given by

𝑅
gray
𝑑
(𝜆
𝑖
) =

𝑉
gray
𝑑
(𝜆
𝑖
)

𝑉
white
𝑑

(𝜆
𝑖
)
⋅ 𝑅

white
(𝜆
𝑖
) , (1)
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(c) Blue channel amplitudes

Figure 1: RGB signals measured on 99%, 50%, and 20% reflectance targets at 39 sampled distances from the scanner, ranging from 2.8 to 6.8
meters.

where 𝑅gray
𝑑
(𝜆
𝑖
) is the measured reflectance factor at the

distance 𝑑 and 𝑅white(𝜆
𝑖
) is the certified spectral reflectance

factor of the perfect diffuser, that is, the white target used
in this measurement. As shown by calibrated signals in
Figure 3, linear calibration (1) does not return the same
reflectance values for light and dark gray targets at each
distance. This nonlinearity generates discontinuities in the
colour representation of gray targets; that is, the punctual
colour model of the same object at different distances is not
exactly represented as having the same colour. Figure 3 shows

the result of the linear calibration procedure applied to light
gray and dark gray targets at 39 sampled distances.

3. Methods

This section presents the mathematical models introduced
in the proposed calibration procedure. Four Spectralon (Lab-
sphere Inc.) Diffusive Reflectance Standards (SRS) with 2%,
20%, 50%, and 99% nominal reflectance have been used as
reference targets for the calculations.



4 Mathematical Problems in Engineering

Distances (m)

Vo
lta

ge
s (

m
V

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

White raw data
50% gray raw data
20% gray raw data

17 18 19 20 21 22 23

(a) Red channel amplitudes
Vo

lta
ge

s (
m

V
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

White raw data
50% gray raw data
20% gray raw data

Distances (m)
17 18 19 20 21 22 23

(b) Green channel amplitudes

Vo
lta

ge
s (

m
V

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

White raw data
50% gray raw data
20% gray raw data

Distances (m)
17 18 19 20 21 22 23

(c) Blue channel amplitudes

Figure 2: RGB signals measured on 99%, 50%, and 20% reflectance targets at 24 sampled distances from the scanner, ranging from 17.7 to
22.3 meters.

3.1. Quadratic Calibration Model. As shown by linear cali-
bration results in Section 2.1, the back-reflected RGB signals
of light gray and dark gray targets are not constant with
distance. A model that considers different certified Lam-
bertian reflectances is needed for compensating this system
nonlinearity and for producing a more accurate colorimetric
representation of real scenes. A nonlinear term is introduced
in the model in order to both eliminate inaccuracies in the
remote colour measurement of gray targets and mimic the
nonlinear perceptual response to luminance of human vision
[17].More accurate data is muchmore suitable for restoration
and diagnosis aids, while adaptation to human perception

makes RGB-ITR images more interesting for dissemination,
cataloguing, and education purposes. To address the second
constraint, the nonlinear term is defined to be comparable
to the power function defined by the Munsell equation of
lightness 𝐿∗ according to the standard CIE 1931 and 1964
[18, 19]:

𝐿
∗
=

{{{

{{{

{

116 ⋅ (
𝑌

𝑌
𝑛

)

1/3

− 16 if 𝑌
𝑌
𝑛

> (
6

29
)

3

𝑙 ⋅ (
𝑌

𝑌
𝑛

) if 𝑌
𝑌
𝑛

< (
6

29
)

3
(2)
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Figure 3: Linear calibration results. RGB calibrated values for light gray and dark gray targets at 39 sampled distances.

with 𝑙 = (29/3)3. The term 𝑌/𝑌
𝑛
is called the luminance

factor, that is, the ratio between the luminances of a specimen
and of a perfect diffuser, when illuminated and viewed under
specified geometric conditions. By definition, the tristimulus
value 𝑌 for an object is the luminance factor and can be
approximated as

𝑌 = 𝐾 ⋅ ∑

𝜆

𝑆 (𝜆
𝑖
) ⋅ 𝑅 (𝜆

𝑖
) ⋅ 𝑦cmf (𝜆𝑖) Δ𝜆, (3)

where 𝑆(𝜆) is a CIE illuminant, 𝑅(𝜆) is the object’s spectral
reflectance factor, 𝑦cmf (𝜆) is one of the three CIE standard
observer colour-matching functions (𝑥cmf (𝜆), 𝑦cmf (𝜆), and
𝑧cmf (𝜆)), ∑𝜆 represents summation across wavelength 𝜆,
Δ𝜆 is the measurement wavelength interval, and 𝐾 is a
conventional normalizing constant defined as [19]

𝐾 =
100

∑
𝜆
𝑆 (𝜆
𝑖
) ⋅ 𝑦cmf (𝜆𝑖) ⋅ Δ𝜆

. (4)

For each distance of measurement and for each channel a
curve is constructed with a quadratic model with nonpoly-
nomial terms necessary for interpolating at each distance
four points given by lightness values measured with the
MINOLTA spectrophotometer-CM-2600d on four SRS. The
use of four targets and the pursuit of the dual objective
mentioned above require the model to be nonlinear in
the coefficients and in the data, respectively. Namely, given
generic 𝑡 data, the model 𝑦(𝑡) should be in the form

𝑦 (𝑡) = 𝑎0 + 𝑎1 ⋅ 𝑓 (𝑡) + 𝑎2 ⋅ 𝑓 (𝑡) ⋅ 𝑡 + 𝑎3 ⋅ 𝑓 (𝑡) ⋅ 𝑡
2
, (5)

where 𝑓(𝑡) is the nonpolynomial function of the model and
𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
are the model coefficients. The 2% diffusive

target is assumed to be the zero (black) for the calibration

measurements. The MINOLTA measurements were per-
formed in a spectrum interval of 380 nm ÷ 740 nm with
Δ𝜆 = 10 nm assuming the 𝐷65 illuminant and the 10∘ CIE
standard observer. Since reflectance values of gray targets
are almost constant in the visible spectrum, RGB-ITR light-
nesses, related to 440 nm, 514 nm, and 660 nm, can be well
approximated with the spectrophotometer measurements.

Given a set of 𝑁 calibration distances 𝑑
1
, . . . , 𝑑

𝑁
, the

model used for each channel and for a generic distance 𝑑
𝑘

can be defined with the following compact form:

𝑦
𝑇1
= 𝑎
0
+ 𝑓 (𝑉

𝑇1
) ⋅

3

∑
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)

𝑦
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+ 𝑓 (𝑉

𝑇3
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3

∑

𝑖=1
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𝑖−1
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)

𝑦
𝑇4
= 𝑎
0
+ 𝑓 (𝑉

𝑇4
) ⋅

3

∑

𝑖=1

𝑎
𝑖
⋅ (𝑉
𝑖−1

𝑇4
) ,

(6)

where 𝑇1, 𝑇2, 𝑇3, and 𝑇4 correspond to the four Lambertian
targets used in the calibration procedure, 𝑉 is the input
measured voltage, 𝑦 is the imposed measured lightness, 𝑎

0
,

𝑎
1
, 𝑎
2
, and 𝑎

3
are the unknown model coefficients, and 𝑓(𝑉)

is the nonlinear term defined as

𝑓 (𝑉) = 𝑉
1/3 (7)

comparable to the lightness measure in (2). The model
coefficients are computed by constructing and solving a set
of simultaneous equations. This is accomplished by forming
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a design matrix [𝑋], where each column represents a variable
used to predict the response (a term in the model) and each
row corresponds to one observation of those variables. For
generic 𝑇 target and 𝑑 distance, the matrix is given by

[𝑋
𝑇
] = [1 𝑉

1/3

𝑇
𝑉
𝑇
⋅ 𝑉
1/3

𝑇
𝑉
2

𝑇
⋅ 𝑉
1/3

𝑇
] . (8)

The least-square solution of the following system returns the
model coefficients at the distance 𝑑:

(𝑎) [𝑋] = (𝑦) . (9)

This procedure is repeated for all 𝑁 distances. Using piece-
wise cubic Hermite polynomials, 4 × 𝑁 coefficients are
interpolated at the acquired scene distances.The evaluation of
the design matrix at scene detected voltages Vs for each RGB
channel gives the nonlinear calibrated intensities Ic, that is,
the approximated lightnesses, of the scene:

[Ic] = (a) [XVs
] . (10)

As an example, the nonlinear model for the red channel,
at a generic distance of measurement and with 25mV of
detected signal measured on the white target, is shown in
Figure 4.

At this distance the black target detected signal is less
than 10 𝜇V (comparable to the instrument noise signal);
thus it does not affect the calculation. Differently, near the
maximum of the calibration curves, the RGB signals can be
very high (tens of mV) and the black signal can be used in the
calibration measure since it can be greater than or equal to
about 1mV.

The implementation of the proposed model is given in
Algorithm 1.

3.2. Interpolation with Piecewise Cubic Hermite Polynomials.
Robust and efficient interpolation of the model coefficients at
scene distances is needed for an accurate calibrationmeasure.
Piecewise cubic Hermite interpolating polynomials 𝐻(𝑥)
have properties that meet these requests [20, 21]. Given an
interval [𝑎, 𝑏], a function 𝑓 : [𝑎, 𝑏] → R, with derivative 𝑓 :
[𝑎, 𝑏] → R, and a set of partition points �⃗� = (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑁
)

with 𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑏, a 𝐶1 cubic Hermite spline

is defined by a set of polynomials ℎ
0
, ℎ
1
, . . . , ℎ

𝑁−1
with

ℎ
𝑖
(𝑥
𝑖
) = 𝑓 (𝑥

𝑖
)

ℎ
𝑖
(𝑥
𝑖+1
) = 𝑓 (𝑥

𝑖+1
)

ℎ


𝑖
(𝑥
𝑖
) = 𝑓

(𝑥
𝑖
)

ℎ


𝑖
(𝑥
𝑖+1
) = 𝑓

(𝑥
𝑖+1
)

(11)

for 𝑖 = 0, 1, . . . , 𝑁 − 1. The spline formed by this collection of
polynomials can be defined as

𝐻(𝑥) =

𝑛

∑

𝑖=0

𝑓 (𝑥
𝑖
) ℎ
𝑖 (𝑥) + 𝑓



𝑖
ℎ


𝑖
(𝑥) . (12)

The Hermite form has two control points and two control
tangents for each polynomial. They are simple to calculate,
in terms of time required to determine the interpolant and to
evaluate it, but at the same time they are too powerful. The
slopes at 𝑥

𝑗
are chosen in such a way that 𝐻(𝑥) preserves

the shape of the data and respects monotonicity [20]. This
means that, on intervals where the data are monotonic,
𝐻(𝑥) is also monotonic; at points where the data has a local
extremum,𝐻(𝑥) also has a local extremum.These properties
make monotonic Hermite interpolation extremely local: if a
single interpolation point 𝑥

𝑖
changes, the approximation can

only be affected in the two intervals [𝑥
𝑖−1
, 𝑥
𝑖
] and [𝑥

𝑖
, 𝑥
𝑖+1
]

which share that partition point. An example of Hermite
interpolation of generic data is shown in Figure 5.

Algorithm 1 (main algorithm steps of the model). Consider
the following.

Input. Scene intensity matrix V, scene distance matrix D,
calibration distance vector d, measured targets intensities xi,
and imposed targets lightnesses yi at calibration distance 𝑑

𝑖

are as follows:

(V) → (V)
𝑛×𝑚×3

(D) → (D)𝑛×𝑚
(d) → (d)

1×𝑘

(xi)1×4 = (𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, 𝑥𝑖,4)

(yi)1×4 = (𝑦𝑖,1, 𝑦𝑖,2, 𝑦𝑖,3, 𝑦𝑖,4) .

(13)
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Output. Calibrated intensity matrix Ic is as follows:

(Ic) → (Ic)𝑛×𝑚×3 . (14)

(1) Form the design matrix at distance 𝑑
𝑖
:

[Xi]4×4 =

[
[
[
[
[
[

[

1 𝑥
1/3

𝑖,1
𝑥
𝑖,1
⋅ 𝑥
1/3

𝑖,1
𝑥
2

𝑖,1
⋅ 𝑥
1/3

𝑖,1

1 𝑥
1/3

𝑖,2
𝑥
𝑖,2
⋅ 𝑥
1/3

𝑖,2
𝑥
2

𝑖,2
⋅ 𝑥
1/3

𝑖,2

1 𝑥
1/3

𝑖,3
𝑥
𝑖,3
⋅ 𝑥
1/3

𝑖,3
𝑥
2

𝑖,3
⋅ 𝑥
1/3

𝑖,3

1 𝑥
1/3

𝑖,4
𝑥
𝑖,4
⋅ 𝑥
1/3

𝑖,4
𝑥
2

𝑖,4
⋅ 𝑥
1/3

𝑖,4

]
]
]
]
]
]

]

. (15)

(2) Compute model coefficients (Ai)1×4 =

(𝑎𝑖,1 𝑎𝑖,2 𝑎𝑖,3 𝑎𝑖,4) with least-square method at
distance 𝑑

𝑖
:

(Ai)1×4 [Xi]4×4 = (yi)4×1 . (16)

(3) Repeat all for each of the k sampling distances:

(Ai)1×4 → (Ai)𝑘×4 . (17)

(4) Interpolate model coefficients at scene distances cor-
responding to the elements of (D)

𝑛×𝑚
with piecewise

cubic Hermite polynomials within (d)
1×𝑘

and (A)
𝑘×4

:

(Ai)𝑘×4 → (Ai)(𝑛⋅𝑚)×4 . (18)

(5) Evaluate the model for each element of the vectorized
(V)
(𝑛⋅𝑚)×𝑗

intensity channel:

(Ic)1×1 = (XV)1×4 (A)4×1 . (19)

(6) Reshape the calibrated scene intensity matrix:

(Ic)(𝑛⋅𝑚)×3 → (Ic)𝑛×𝑚×3 . (20)

In this work, the derivative values of each polynomial
are approximated in such a way that the interpolation could
not be significantly affected by errors that can occur in the
calibration procedure, that is, wrong distance measurements.
Giving a set of 𝑛 calibration distances (𝑑) = (𝑑

1
, . . . , 𝑑

𝑛
)

and detected voltages (V) = (V
1
, . . . , V

𝑛
), the derivatives 𝑔 on

the left and right edges are computed by taking the forward
differences:

𝑔
1
=

V
2
− V
1

𝑑
2
− 𝑑
1

𝑔
𝑛
=

V
𝑛
− V
𝑛−1

𝑑
𝑛
− 𝑑
𝑛−1

.

(21)

On interior points V
𝑖
with 1 < 𝑖 < 𝑛 taking the central

differences,

𝑔
𝑖
=

V
𝑖+1
− V
𝑖−1

𝑑
𝑖+1
− 𝑑
𝑖−1

. (22)

This simple approximation is first-order accurate for evenly
and unevenly spaced points. More accurate methods for
finite difference approximation of derivatives that distinguish
between evenly and unevenly spaced points do not work well
with noisy data; thus, they are not useful in this context. In
order to compare the robustness of this gradient computation
method to errors occurring in remote measurements with
respect to a more accurate one, noise is introduced in the
calibration distance measurements. Hermite interpolations
are performed with both approximation methods on data
unevenly perturbated by adding normally distributed ran-
dom numbers on acquired distances. Numerical simulations
are performed on single channel data detected in a range of
[2.5 ÷ 7.5]m for 500 different sets of random perturbations
ranging from 0 to 5 cm. Three different sets of perturbations
are shown in Figure 6. The more accurate approximation
method performs Hermite interpolation by using (21) and
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Figure 6: (a) Three sets of normally distributed random perturbations. Values range from 0 to 5 cm. In the 𝑖th row, 𝑗th column of the figure
is a scatter plot of the 𝑖th set against the 𝑗th set of perturbations. A histogram of each set is plotted along the diagonal of the figure. (b)
perturbations p1, p2, and p3 plotted as function of calibration distances.
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Figure 7: Hermite interpolation on two differently perturbated single channel pieces of data with first-order accurate (method 1) and
second-order accurate (method 2) derivative approximations. In both cases, the maximum perturbation introduced is of 5 cm on distance
measurements. In (c) the mean interpolation error produced by 500 different random perturbation sets on true data is reported for both
methods.

(22) for evenly spaced points and replaces (22) for unevenly
spaced points with the following formula:

𝑔
𝑖
=
V
𝑖+1
⋅ ℎ
𝑖
/ℎ
𝑖+1
− V
𝑖−1
⋅ ℎ
𝑖+1
/ℎ
𝑖

ℎ
𝑖
+ ℎ
𝑖+1

+ V
𝑖
⋅ (
1

ℎ
𝑖

−
1

ℎ
𝑖+1

) (23)

with ℎ
𝑖
= 𝑑
𝑖+1
− 𝑑
𝑖
. Contrarily to (22), this approximation is

second-order accurate for both evenly and unevenly spaced
coordinates. Some results of Hermite interpolation with
both methods are shown in Figure 7. As can be noted, the
less accurate approximation method for derivatives has a
low mean interpolation error that is almost constant in all

the simulations. Contrarily, in some cases, the more accurate
one produces large interpolation errors as can be observed by
Figures 7(b) and 7(c). Thus, Hermite polynomials with first-
order accurate method keep good capabilities for interpola-
tion and also exhibit low computational complexity.

3.3. Remote Lambertian Model for Experimental Validation.
An accurate quantitative analysis for RGB-ITR colorimetric
calibrations can be carried out by comparing prototype
remote measurements with spectrophotometer measure-
ments on certified Lambertian targets.
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Figure 8: Laboratory distance image. The scene distances range
from 3.9 to 7.7 meters.

A remote Lambertian model is computed in labora-
tory for assessing the accuracy of the proposed algorithm
(Algorithm 1). The presented laboratory test was processed
with controlled conditions act to simulate all the possible
power variations of the laser sources equipped inside the
RGB-ITR scanner. The model is based on the RGB measures
of the four SRS, placed at different distances and illuminated
by RGB-ITR lasers. Each RGB signal is collected by moving
the targets at sampling distances of about 10 cm in a range
of [2.5 ÷ 7.7]m. Three RGB curves as a function of distance
are computed for each target, that is, three RGB [𝑛 × 1]
vector quantities, where 𝑛 is the number of sampled dis-
tances. Using Hermite polynomials and first-order accurate
derivative approximations, remote colour models for light
gray (50% reflectance) and dark gray (20% reflectance) SRS
are estimated. More precisely, interpolating the detected
RGB signals of the gray targets at acquired RGB-ITR real
scene distances (Figure 8) and reshaping the computed vector
quantities to scene matrix dimensions, colour texture images
for both targets are generated. These interpolated matrix
quantities represent the remote Lambertian models, which
are then calibrated. Linear and nonlinear calibrations of light
gray SRS raw model give the images shown in Figure 9.
Differently from the linear calibrated image, the nonlinear
one does not show discontinuities; that is, the same object is
correctly represented as having the same colour at all scene
distances. On the contrary, in Figure 9(a), it is possible to
identify objects located at different distances. A quantitative
result of this correction is given with the RGB histograms
shown in Figure 10. The histograms are computed using the
probability normalization function with bin width of 0.05 for
both the Lambertian models.

A comparison of these results with MINOLTA measure-
ments performed on light and dark gray targets is reported
in Table 1. RGB linear calibrated values are more different
between them with respect to the reflectances measured by
MINOLTA. Nonlinear calibration ensures that RGB values
measured on gray targets are much more similar to each
other and to MINOLTA measurements. In this way, colour

Table 1: Numerical comparison of the reflectance [𝑅] and lightness
[𝐿
∗
] values measured by MINOLTA spectrophotometer and RGB-

ITR with linear and nonlinear calibration methods for the 50%
reflectance gray target.

Instrument 𝜆 = 440 nm 𝜆 = 514 nm 𝜆 = 660 nm
MINOLTA [𝑅] 0.46 0.47 0.49

RGB-ITR [𝑅]
mean value 0.505 ± 0.02 0.521 ± 0.015 0.560 ± 0.02

MINOLTA [𝐿∗] 0.75 0.75 0.75

RGB-ITR [𝐿∗]
mean value 0.749 ± 0.011 0.752 ± 0.01 0.748 ± 0.012

discontinuities, caused by nonlinearities of the system, can
be reduced. This quantitative result demonstrates that the
proposedmodel provides significantly better colourmapping
in comparison with the conventional linear method when
illuminating certified targets.

Figure 11 reports raw data normalized by the maximum
RGBvalues and linear andnonlinear calibrated images for the
real scene acquired in laboratory at distances shown in the
range image (Figure 8) used for remote Lambertian models
generation. The raw input image is not colorimetrically
correct since each RGB sampled surface point is dependent
on the artwork/scanner distance and on the level of the RGB
signals that illuminate each point. In particular, the white
statue appears greenish, while the small object in the lower
left side of the scene is represented to be too dark and is
difficult to recognize. The wrong gray shades on the white
wall of the linear calibrated image are strongly reduced with
the proposed correction method. The proposed scene with
large whitish areas well fit the purpose of this validation, since
the small variations of the collected back-reflected signals are
more visible in a neutral (whitish or grayish) region than in
a colourful environment and show that two objects having
similar colour properties but located at different distances
from the scanner, such aswall and statue, are representedwith
different colours in noncalibrated data.

4. Applications of the Model

Thenonlinearmodelwas testedwith success on various RGB-
ITR scans. In this paper, results concerning the application of
the model on two different digitizations are reported:

(i) The fresco of “Amore e Psiche” (Villa Farnesina,
Rome) located at a distance of 7–9 meters from the
scanning system.

(ii) The Vault of the Sistine Chapel (Vatican Museums,
Rome) located at 17-18 meters of distance from the
scanning system.

To confirm the effectiveness of the proposed colorimetric
calibration, a comparisonwith the corresponding normalized
raw data and linear calibrated models is shown in Figures
12 and 13. For illustrative purposes, only some portions of
these huge digitizations are reported. It can be observed
that the raw images are darker than the calibrated ones and
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Figure 9: Linear and nonlinear calibrations of light gray remote Lambertian model. The model is calculated at the RGB-ITR scene distances
shown in Figure 11(c).
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Figure 10: Histograms of the calibrated dark gray (a) and light gray (b) Lambertian colour models. Each coloured histogram corresponds to
one type of RGB channel data.

have higher red and blue intensity components, related to
higher red and blue ITR signals that illuminate the scene at
those distances. The processed colour images, in union with
the experimental validation in Section 3.3, demonstrate that
the nonlinear model can be viewed as a colorimetric trans-
formation that visibly reduces inaccuracies occurring when
linearly calibrating grayish/whitish areas and eliminates the
dependence on RGB signals’ level, that is, the position of the
RGB scene signals in the calibration curves, as performed by
linear calibrations.

It is important to underline that linear and nonlinear
models correspond to two different colour spaces: approx-
imated reflectance space, the linear one, and approximated
lightness space, the nonlinear one. Both images appear to
be visually pleasing to the observer, but, as quantitatively

demonstrated on certified targets, the nonlinear one repre-
sents a much more accurate laser colour model.

Overall, these results show that the proposed nonlinear
calibration works well for real scenes located at different
distances from the scanner. As confirmed by experts in
cultural heritage sector, the nonlinear calibrated models can
be considered suitable colour images for cultural heritage
purposes.

5. Conclusion

This paper has presented a nonlinear model for remote
calibration of laser colour images. The problem of linear
calibration for gray diffusive certified targets is discussed.The
nonlinear model is introduced in the calibration procedure
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Figure 12: RGB-ITR raw data and linear and nonlinear calibrated colour textures of real scene at 7–9 meters of distance.
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Figure 13: RGB-ITR raw data and linear and nonlinear calibrated colour textures of real scene at about 17-18 meters of distance.

as a postprocessing step for the correction of raw colori-
metric data, that is, for both reducing inaccuracies occur-
ring in remote measurement of gray targets and providing
meaningful colour images for cultural heritage purposes.
The nonlinearity of the model is the consequence of the
processing made on data collected by illuminating four
different calibrated targets. An experimental validation of
the proposed algorithm is performed with a remote Lamber-
tian model computed by using monotonic piecewise cubic
Hermite polynomials and certified diffusive targets. This
quantitatively demonstrates that the nonlinearmodel ismuch
more accurate than the linear one when performing remote
colorimetric measurements on different certified Lamber-
tian targets. Hermite polynomials with first-order accurate
derivative approximation formula have shown robust and
efficient interpolation performances in presence of added
noise. Results that highlight the effectiveness of the proposed
model in producing meaningful images for dissemination,
education, and cataloguing purposes are reported.

In conclusion, this work has shown that the processing of
colorimetric data permits generating more accurate texture
images that if combined with 3D laser models can provide
high-quality information. Although remote colour calibra-
tion procedure is still object of active research, the proposed
nonlinear correction suggests that an optimal calibration
is possible for the RGB-ITR. This represents an improve-
ment especially in the cultural heritage domain, where the
colorimetric characterisation of an artwork has the same
significance of the structural determination of the artwork
itself.
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