18 research outputs found

    The Gα12/13 family of heterotrimeric G proteins and the small GTPase RhoA link the Kaposi sarcoma-associated herpes virus G protein-coupled receptor to heme oxygenase-1 expression and tumorigenesis

    Get PDF
    Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Gα12/13 family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Gα12, Gα13, or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Gα13 or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Gα12/13/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.Fil:Tanos, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Coso, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor

    Get PDF
    Heme oxygenase-1 (HO-1), the inducible enzyme responsible for the rate-limiting step in the heme catabolism, is expressed in AIDS-Kaposi sarcoma (KS) lesions. Its expression is up-regulated by the Kaposi sarcoma-associated herpesvirus (KSHV) in endothelial cells, but the mechanisms underlying KSHV-induced HO-1 expression are still unknown. In this study we investigated whether the oncogenic G protein-coupled receptor (KSHV-GPCR or vGPCR), one of the key KSHV genes involved in KS development, activated HO-1 expression. Here we show that vGPCR induces HO-1 mRNA and protein levels in fibroblasts and endothelial cells. Moreover, targeted knock-down gene expression of HO-1 by small hairpin RNA and chemical inhibition of HO-1 enzymatic activity by tin protoporphyrin IX (SnPP), impaired vGPCR-induced survival, proliferation, transformation, and vascular endothelial growth factor (VEGF)-A expression. vGPCR-expressing cells implanted in the dorsal flank of nude mice developed tumors with elevated HO-1 expression and activity. Chronic administration of SnPP to the implanted mice, under conditions that effectively blocked HO-1 activity and VEGF-A expression in the transplanted cells, strikingly reduced tumor growth, without apparent side effects. On the contrary, administration of the HO-1 inducer cobalt protoporphyrin (CoPP) further enhanced vGPCR-induced tumor growth. These data postulate HO-1 as an important mediator of vGPCR-induced tumor growth and suggest that inhibition of intratumoral HO-1 activity by SnPP may be a potential therapeutic strategy. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.Fil:Tanos, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Coso, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Phosphorylation of c-Fos by members of the p38 MAPK family: Role in the AP-1 response to UV light

    Get PDF
    Exposure to sources of UV radiation, such as sunlight, induces a number of cellular alterations that are highly dependent on its ability to affect gene expression. Among them, the rapid activation of genes coding for two subfamilies of proto-oncoproteins, Fos and Jun, which constitute the AP-1 transcription factor, plays a key role in the subsequent regulation of expression of genes involved in DNA repair, cell proliferation, cell cycle arrest, death by apoptosis, and tissue and extracellular matrix remodeling proteases. Besides being regulated at the transcriptional level, Jun and Fos transcriptional activities are also regulated by phosphorylation as a result of the activation of intracellular signaling cascades. In this regard, the phosphorylation of c-Jun by UV-induced JNK has been readily documented, whereas a role for Fos proteins in UV-mediated responses and the identification of Fos-activating kinases has remained elusive. Here we identify p38 MAPKs as proteins that can associate with c-Fos and phosphorylate its transactivation domain both in vitro and in vivo. This phosphorylation is transduced into changes in its transcriptional ability as p38-activated c-Fos enhances AP1-driven gene expression. Our findings indicate that as a consequence of the activation of stress pathways induced by UV light, endogenous c-Fos becomes a substrate of p38 MAPKs and, for the first time, provide evidence that support a critical role for p38 MAPKs in mediating stress-induced c-Fos phosphorylation and gene transcription activation. Using a specific pharmacological inhibitor for p38α and -β, we found that most likely these two isoforms mediate UV-induced c-Fos phosphorylation in vivo. Thus, these newly described pathways act concomitantly with the activation of c-Jun by JNK/MAPKs, thereby contributing to the complexity of AP1-driven gene transcription regulation.Fil:Tanos, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Hochbaum, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martinetto, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Coso, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Sink-source and sink-sink relations during reproductive development in Lolium perenne L.

    No full text
    In greenhouse pot trials, L. perenne cv. Barlet plants were labelled with 13C at regular intervals from main spike emergence onwards in order to identify and measure the activity of source and sink organs during seed formation. The source activity of the various tiller groups within the plant roughly reflected the relative contributions of these groups to total plant dry mass. After anthesis there was little net exchange of 13C-label between the older and younger tiller groups. From main spike emergence onwards the source activity of the leaves of the reproductive tiller declined sharply, from 95% of total tiller photosynthesis to 16% at final cutting. The spike became the main assimilating organ on the flowering tiller as the leaves aged. During anthesis the stem was a stronger sink than the seeds. At final cutting 70% of the label was located in the stem, when fixed during anthesis. Water-soluble carbohydrates accumulated in the stem, forming up to 25% of dry matter. After anthesis the sink strength of the developing seeds increased and that of the stem decreased and the stem remained a net sink organ up to about mid-seed filling. Pre-anthesis assimilates contributed 14% to final seed and spikelet carbon, when correcting for the palea and lemma that are present before anthesis. These results show that the stem is a temporary storage organ that can support seed filling. However, only a small amount of the stem reserves was used by the seeds. In contrast to carbon, nitrogen was largely redistributed from the stem and leaves to the seeds. At final harvest 59% of the nitrogen in the flowering tiller was located in the seeds

    The Gα12/13 family of heterotrimeric G proteins and the small GTPase RhoA link the Kaposi sarcoma-associated herpes virus G protein-coupled receptor to heme oxygenase-1 expression and tumorigenesis

    No full text
    Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Gα12/13 family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Gα12, Gα13, or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Gα13 or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Gα12/13/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.Fil:Tanos, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Coso, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor

    No full text
    Heme oxygenase-1 (HO-1), the inducible enzyme responsible for the rate-limiting step in the heme catabolism, is expressed in AIDS-Kaposi sarcoma (KS) lesions. Its expression is up-regulated by the Kaposi sarcoma-associated herpesvirus (KSHV) in endothelial cells, but the mechanisms underlying KSHV-induced HO-1 expression are still unknown. In this study we investigated whether the oncogenic G protein-coupled receptor (KSHV-GPCR or vGPCR), one of the key KSHV genes involved in KS development, activated HO-1 expression. Here we show that vGPCR induces HO-1 mRNA and protein levels in fibroblasts and endothelial cells. Moreover, targeted knock-down gene expression of HO-1 by small hairpin RNA and chemical inhibition of HO-1 enzymatic activity by tin protoporphyrin IX (SnPP), impaired vGPCR-induced survival, proliferation, transformation, and vascular endothelial growth factor (VEGF)-A expression. vGPCR-expressing cells implanted in the dorsal flank of nude mice developed tumors with elevated HO-1 expression and activity. Chronic administration of SnPP to the implanted mice, under conditions that effectively blocked HO-1 activity and VEGF-A expression in the transplanted cells, strikingly reduced tumor growth, without apparent side effects. On the contrary, administration of the HO-1 inducer cobalt protoporphyrin (CoPP) further enhanced vGPCR-induced tumor growth. These data postulate HO-1 as an important mediator of vGPCR-induced tumor growth and suggest that inhibition of intratumoral HO-1 activity by SnPP may be a potential therapeutic strategy. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.Fil:Tanos, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Coso, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Phosphorylation of c-Fos by members of the p38 MAPK family: Role in the AP-1 response to UV light

    No full text
    Exposure to sources of UV radiation, such as sunlight, induces a number of cellular alterations that are highly dependent on its ability to affect gene expression. Among them, the rapid activation of genes coding for two subfamilies of proto-oncoproteins, Fos and Jun, which constitute the AP-1 transcription factor, plays a key role in the subsequent regulation of expression of genes involved in DNA repair, cell proliferation, cell cycle arrest, death by apoptosis, and tissue and extracellular matrix remodeling proteases. Besides being regulated at the transcriptional level, Jun and Fos transcriptional activities are also regulated by phosphorylation as a result of the activation of intracellular signaling cascades. In this regard, the phosphorylation of c-Jun by UV-induced JNK has been readily documented, whereas a role for Fos proteins in UV-mediated responses and the identification of Fos-activating kinases has remained elusive. Here we identify p38 MAPKs as proteins that can associate with c-Fos and phosphorylate its transactivation domain both in vitro and in vivo. This phosphorylation is transduced into changes in its transcriptional ability as p38-activated c-Fos enhances AP1-driven gene expression. Our findings indicate that as a consequence of the activation of stress pathways induced by UV light, endogenous c-Fos becomes a substrate of p38 MAPKs and, for the first time, provide evidence that support a critical role for p38 MAPKs in mediating stress-induced c-Fos phosphorylation and gene transcription activation. Using a specific pharmacological inhibitor for p38α and -β, we found that most likely these two isoforms mediate UV-induced c-Fos phosphorylation in vivo. Thus, these newly described pathways act concomitantly with the activation of c-Jun by JNK/MAPKs, thereby contributing to the complexity of AP1-driven gene transcription regulation.Fil:Tanos, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Hochbaum, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martinetto, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Coso, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore