12 research outputs found

    The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.

    Get PDF
    In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated to torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with TOR1A-AMC5 have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with fetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71% with higher mortality in males. Death occurred at a median age of 1.2 months (1 week - 9 years) due to respiratory failure, cardiac arrest, or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival

    Ovarian insufficiency and secondary amenorrhea in a patient with a novel variant within GDF9 gene.

    No full text
    OBJECTIVE: Premature ovarian insufficiency is a heterogeneous condition that can be caused by several factors, such as genetic, environmental, etc. and represents one of the main causes of female infertility. One of the genes implicated is GDF9, which encodes a member of the transforming growth factor-beta superfamily that participates in the coordination of somatic cell activity, female fertility, including folliculogenesis, and oocyte maturation. Damaging variants in GDF9-encoded growth factors can cause the production of inhibin, perturb oocyte granulosa cell microenvironments, and obstruct follicle development. A novel GDF9 variant is herein reported to consolidate the role of GDF9 in ovarian function and female fertility. METHODS: A 38-year-old female was referred for the investigation of secondary amenorrhea. Eventually, she was referred for genetic evaluation whereby conventional karyotyping and Fragile-X molecular testing were normal. Whole Exome Sequencing was performed, followed by targeted Sanger sequencing in all family members for variant confirmation and evaluation. RESULTS: In this study we report a patient presenting with secondary amenorrhea due to premature ovarian failure and a pituitary lesion with radiological characteristics compatible with a Rathke cyst or a macroadenoma, residing between the adenohypophysis and neurohypophysis. Whole exome sequencing revealed a novel heterozygous stop-loss variant c.1364A>C, p.(*455Serext*8) in the GDF9 gene. CONCLUSIONS: Should the predicted elongated GDF9 protein and differentially configurated GDF9 mature protein molecule form unstable dimers, rapid proteolytic degradation may take place and inhibit homo/heterodimer formation

    Retrospective analysis of persistent HyperCKemia with or without muscle weakness in a case series from Greece highlights vast <i>DMD</i> variants’ heterogeneity

    No full text
    Persistent hyperCKemia results from muscle dysfunction often attributed to genetic alterations of muscle-related genes, such as the dystrophin gene (DMD). Retrospective assessment of findings from DMD analysis, in association with persistent HyperCKemia, was conducted. Evaluation of medical records from 1354 unrelated cases referred during the period 1996–2021. Assessment of data concerning the detection of DMD gene rearrangements and nucleotide variants. A total of 730 individuals (657 cases, 569 of Greek and 88 of Albanian origins) were identified, allowing an overall estimation of dystrophinopathy incidence at ~1:3800 live male births. The heterogeneous spectrum of 275 distinct DMD alterations comprised exon(s) deletions/duplications, nucleotide variants, and rare events, such as chromosome translocation {t(X;20)}, contiguous gene deletions, and a fused gene involving the DMD and the DOCK8 genes. Ethnic-specific findings include a common founder variant in exon 36 (‘Hellenic’ variant). Some 50% of hyperCKemia cases were characterized as dystrophinopathies, highlighting that DMD variants may be considered the most common cause of hyperCKemia in Greece. Delineation of the broad genetic and clinical heterogeneity is fundamental for actionable public health decisions and theragnosis, as well as the establishment of guidelines addressing ethical considerations, especially related to the mild asymptomatic patient subgroup.</p

    Guest editorial: revised selected papers from the LION 13 conference

    No full text
    Summarization: In May 2019, we had the honor of organizing the thirteenth installment of the conference series “Learning and Intelligent Optimization” (LION) in Chania, Crete, Greece. This conference (https://www.lion13.pem.tuc.gr/), which continued the successful series of LION events, was aimed at exploring the intersections and uncharted territories between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems. The conference was very successful in attracting researchers from around the world and in bringing together experts from these areas to discuss new ideas and methods, challenges and opportunities in various application areas, general trends and specific developments. This special issue of the journal of Annals of Mathematics and Artificial Intelligence is devoted to LION 13. The selected papers presented here are full length versions which have undergone a standard refereeing process appropriate for journal papers. The papers accepted fall broadly under the areas of Machine learning, Artificial Intelligence, Swarm Intelligence, Global Optimization, Discrete Optimization, Multiobjective Optimization, Evolutionary Algorithms and Multi-Agent Systems.Presented on
    corecore