5 research outputs found

    Numerical Simulation Methods Applied at Fiber Grating Sensors Design

    Get PDF
    The paper presents the results obtained in simulation of fiber Bragg grating (FBG) and long-period grating (LPG) sensors and their applications. The optical properties of FBG and LPG are firstly analyzed and, consequently, the basics of simulation models are provided. Coupled-mode theory and the transfer matrix methods are the two techniques used for the simulation of FBG and LPG. The numerical simulations are performed for an improved design of these types of fiber sensors, designs dedicated to specified applications. The different FBG types, i.e. the normal, chirped, apodized, according to different laws and tilted cases, are analyzed. Also, various LPG configurations are numerically simulated. The two main categories of sensing applications, for temperature and for mechanical stress/strain evaluation, are simulated for each type of fiber grating sensor. The chapter is intended to be a synthesis of already obtained results to which some results of research in development are added

    Stable One-Dimensional Periodic Wave in Kerr-Type and Quadratic Nonlinear Media

    Get PDF
    We present the propagation of optical beams and the properties of one-dimensional (1D) spatial solitons (“bright” and “dark”) in saturated Kerr-type and quadratic nonlinear media. Special attention is paid to the recent advances of the theory of soliton stability. We show that the stabilization of bright periodic waves occurs above a certain threshold power level and the dark periodic waves can be destabilized by the saturation of the nonlinear response, while the dark quadratic waves turn out to be metastable in the broad range of material parameters. The propagation of (1+1) a dimension-optical field on saturated Kerr media using nonlinear Schrödinger equations is described. A model for the envelope one-dimensional evolution equation is built up using the Laplace transform

    Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy

    No full text
    This paper investigates the correlation between the high level of coronavirus SARS-CoV-2 infection accelerated transmission and lethality, and surface air pollution in Milan metropolitan area, Lombardy region in Italy. For January–April 2020 period, time series of daily average inhalable gaseous pollutants ozone (O3) and nitrogen dioxide (NO2), together climate variables (air temperature, relative humidity, wind speed, precipitation rate, atmospheric pressure field and Planetary Boundary Layer) were analyzed. In spite of being considered primarily transmitted by indoor bioaerosols droplets and infected surfaces or direct human-to-human personal contacts, it seems that high levels of urban air pollution, and climate conditions have a significant impact on SARS-CoV-2 diffusion. Exhibited positive correlations of ambient ozone levels and negative correlations of NO2 with the increased rates of COVID-19 infections (Total number, Daily New positive and Total Deaths cases), can be attributed to airborne bioaerosols distribution. The results show positive correlation of daily averaged O3 with air temperature and inversely correlations with relative humidity and precipitation rates. Viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein, which allows coronavirus attachment on ambient air pollutants. At this moment it is not clear if through airborne diffusion, in the presence of outdoor and indoor aerosols, this protein “spike” of the new COVID-19 is involved in the infectious agent transmission from a reservoir to a susceptible host during the highest nosocomial outbreak in some agglomerated industrialized urban areas like Milan is. Also, in spite of collected data for cold season (winter-early spring) period, when usually ozone levels have lower values than in summer, the findings of this study support possibility as O3 can acts as a COVID-19 virus incubator. Being a novel pandemic coronavirus version, it might be ongoing during summer conditions associated with higher air temperatures, low relative humidity and precipitation levels
    corecore