10 research outputs found

    Bench-to-bedside translation of magnetic nanoparticles

    Get PDF
    Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of biomedicines. Their promise revolves around the broad versatility and biocompatibility of the MNPs and their unique physicochemical properties. Guided by applied external magnetic fields, MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few applications being developed for MNPs. MNPs toxicities linked to shape, size and surface chemistry are real and must be addressed before clinical use is realized. This article presents both the promise and perils of this new nanotechnology, with an eye towards opportunity in translational medical science

    ATR maintains chromosomal integrity during postnatal cerebellar neurogenesis and is required for medulloblastoma formation

    Get PDF
    Microcephaly and medulloblastoma may both result from mutations that compromise genomic stability. We report that ATR, which is mutated in the microcephalic disorder Seckel syndrome, sustains cerebellar growth by maintaining chromosomal integrity during postnatal neurogenesis. Atr deletion in cerebellar granule neuron progenitors (CGNPs) induced proliferation-associated DNA damage, p53 activation, apoptosis and cerebellar hypoplasia in mice. Co-deletions of either p53 or Bax and Bak prevented apoptosis in Atr-deleted CGNPs, but failed to fully rescue cerebellar growth. ATR-deficient CGNPs had impaired cell cycle checkpoint function and continued to proliferate, accumulating chromosomal abnormalities. RNA-Seq demonstrated that the transcriptional response to ATR-deficient proliferation was highly p53 dependent and markedly attenuated by p53 co-deletion. Acute ATR inhibition in vivo by nanoparticle-formulated VE-822 reproduced the developmental disruptions seen with Atr deletion. Genetic deletion of Atr blocked tumorigenesis in medulloblastoma-prone SmoM2 mice. Our data show that p53-driven apoptosis and cell cycle arrest – and, in the absence of p53, non-apoptotic cell death – redundantly limit growth in ATR-deficient progenitors. These mechanisms may be exploited for treatment of CGNP-derived medulloblastoma using ATR inhibition

    Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues

    Get PDF
    Magnetic nanoparticles (MNPs) accumulate at disease sites with the aid of magnetic fields; biodegradable MNPs can be designed to facilitate drug delivery, influence disease diagnostics, facilitate tissue regeneration and permit protein purification. Because of their limited toxicity, MNPs are widely used in theranostics, simultaneously facilitating diagnostics and therapeutics. To realize therapeutic end points, iron oxide nanoparticle cores (5–30 nm) are encapsulated in a biocompatible polymer shell with drug cargos. Although limited, the toxic potential of MNPs parallels magnetite composition, along with shape, size and surface chemistry. Clearance is hastened by the reticuloendothelial system. To surmount translational barriers, the crystal structure, particle surface and magnetic properties of MNPs need to be optimized. With this in mind, we provide a comprehensive evaluation of advancements in MNP synthesis, functionalization and design, with an eye towards bench-to-bedside translation

    Synthesis of Well-Defined Gold Nanoparticles Using Pluronic: The Role of Radicals and Surfactants in Nanoparticles Formation

    No full text
    Synthesis of gold nanoparticles (GNP) by reacting chloroauric acid (HAuCl4) and Pluronic F127 was thoroughly investigated. The rate of reduction of HAuCl4 and the yield and morphology of GNP strongly depended on the concentration of the reactants and sodium chloride, as well as pH and temperature. Upon completion of the reaction heterogeneous mixtures of small GNP of defined shape and Pluronic aggregates were formed. GNP were separated from the excess of Pluronic by centrifugal filtration. Under optimized conditions the GNP were small (ca. 80 nm), uniform (PDI ~0.09), strongly negatively charged (ζ-potential −30 mV) and nearly spherical. They were stable in distilled water and phosphate-buffered saline. Purified GNP contained ~13% by weight of an organic component, yet presence of polypropylene oxide was not detected suggesting that Pluronic was not adsorbed on their surface. Analysis of the soluble products suggested that the copolymer undergoes partial degradation accompanied by cleavage of the C–O bonds and appearance of new primary hydroxyl groups. The reaction involves formation of free radicals and hydroperoxides depends on the oxygen concentration. GNP did not form at 4 °C when the micellization of Pluronic was abolished reinforcing the role of the copolymer self-assembly. In conclusion, this work provides insight into the mechanism of HAuCl4 reduction and GNP formation in the presence of Pluronic block copolymers. It is useful for improving the methods of manufacturing uniform and pure GNP that are needed as nanoscale building blocks in nanomedicine applications

    Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer

    No full text
    Nanoparticle-based systems for concurrent delivery of multiple drugs can improve outcomes of cancer treatments, but face challenges because of differential solubility and fairly low threshold for incorporation of many drugs. Here we demonstrate that this approach can be used to greatly improve the treatment outcomes of etoposide (ETO) and platinum drug combination (“EP/PE”) therapy that is the backbone for treatment of prevalent and deadly small cell lung cancer (SCLC). A polymeric micelle system based on amphiphilic block copolymer poly­(2-oxazoline)­s (POx) poly­(2-methyl-2-oxazoline-<i>block</i>-2-butyl-2-oxazoline-<i>block</i>-2-methyl-2-oxazoline) (P­(MeOx-<i>b</i>-BuOx-<i>b</i>-MeOx) is used along with an alkylated cisplatin prodrug to enable co-formulation of EP/PE in a single high-capacity vehicle. A broad range of drug mixing ratios and exceptionally high two-drug loading of over 50% wt. drug in dispersed phase is demonstrated. The highly loaded POx micelles have worm-like morphology, unprecedented for drug loaded polymeric micelles reported so far, which usually form spheres upon drug loading. The drugs co-loading in the micelles result in a slowed-down release, improved pharmacokinetics, and increased tumor distribution of both drugs. A superior antitumor activity of co-loaded EP/PE drug micelles compared to single drug micelles or their combination as well as free drug combination was demonstrated using several animal models of SCLC and non-small cell lung cancer

    <i>In Situ</i> Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field

    No full text
    Magnetomechanical modulation of biochemical processes is a promising instrument for bioengineering and nanomedicine. This work demonstrates two approaches to control activity of an enzyme, α-chymotrypsin immobilized on the surface of gold-coated magnetite magnetic nanoparticles (GM-MNPs) using a nonheating low-frequency magnetic field (LF MF). The measurement of the enzyme reaction rate was carried out <i>in situ</i> during exposure to the magnetic field. The first approach involves α-chymotrypsin-GM-MNPs conjugates, in which the enzyme undergoes mechanical deformations with the reorientation of the MNPs under LF MF (16–410 Hz frequency, 88 mT flux density). Such mechanical deformations result in conformational changes in α-chymotrypsin structure, as confirmed by infrared spectroscopy and molecular modeling, and lead to a 63% decrease of enzyme initial activity. The second approach involves an α-chymotrypsin–GM-MNPs/trypsin inhibitor–GM-MNPs complex, in which the activity of the enzyme is partially inhibited. In this case the reorientation of MNPs in the field leads to disruption of the enzyme–inhibitor complex and an almost 2-fold increase of enzyme activity. The results further demonstrate the utility of magnetomechanical actuation at the nanoscale for the remote modulation of biochemical reactions

    Luteinizing Hormone Releasing Hormone-Targeted Cisplatin-Loaded Magnetite Nanoclusters for Simultaneous MR Imaging and Chemotherapy of Ovarian Cancer

    No full text
    Given the superior soft tissue contrasts obtained by MRI and the long residence times of magnetic nanoparticles (MNPs) in soft tissues, MNP-based theranostic systems are being developed for simultaneous imaging and treatment. However, development of such theranostic nanoformulations presents significant challenges of balancing the therapeutic and diagnostic functionalities in order to achieve optimum effect from both. Here we developed a simple theranostic nanoformulation based on magnetic nanoclusters (MNCs) stabilized by a bisphosphonate-modified poly­(glutamic acid)-<i>b</i>-(ethylene glycol) block copolymer and complexed with cisplatin. The MNCs were decorated with luteinizing hormone releasing hormone (LHRH) to target LHRH receptors (LHRHr) overexpressed in ovarian cancer cells. The targeted MNCs significantly improved the uptake of the drug in cancer cells and decreased its IC<sub>50</sub> compared to the nontargeted formulations. Also, the enhanced LHRHr-mediated uptake of the targeted MNCs resulted in enhancement in the T<sub>2</sub>-weighted negative contrast in cellular phantom gels. Taken together, the LHRH-conjugated MNCs show good potential as ovarian cancer theranostics
    corecore