
Bench-to-bedside translation of magnetic nanoparticles

Dhirender Singh1,2, JoEllyn M McMillan2, Alexander V Kabanov3, Marina Sokolsky-
Papkov3, and Howard E Gendelman1,2,*

1Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
68198-5800, USA

2Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical
Center, Omaha, NE 68198-5800, USA

3Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract

Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of

biomedicines. Their promise revolves around the broad versatility and biocompatibility of the

MNPs and their unique physicochemical properties. Guided by applied external magnetic fields,

MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of

inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug

and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few

applications being developed for MNPs. MNPs toxicities linked to shape, size and surface

chemistry are real and must be addressed before clinical use is realized. This article presents both

the promise and perils of this new nanotechnology, with an eye towards opportunity in

translational medical science.

Keywords

biocompatibility; drug targeting; magnetic hyperthermia; MRI; nanoparticle; targeted drug and
gene delivery; tissue engineering

Background

The potential of nanomedicine in revolutionizing how modern medicine is practiced for

diagnostics and therapies is enormous [1]. Synthetic or natural polymer carriers that can

encapsulate therapeutic agents or carry them adsorbed or chemically linked to the particle

surface can extend therapeutic indices and improve early diagnostics [2]. Among the range

of nanoparticulate systems being explored for translational medicine, magnetic nanoparticles
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(MNPs) have gained increasing attention due to their unique functional properties [3]. The

superpara-magnetic iron oxide core of MNPs offers both imaging and targeting capabilities

in the presence of a magnetic field. Therefore, MNPs coated with a biocompatible polymer

and carrying drug cargo can use a magnetic field to facilitate targeted drug delivery at

specific disease sites, and MRI to measure the targeting efficacy (Figure 1) [4].

Development of nanotherapeutics for treatment of microbial infections that include HIV can

follow a similar approach [5].

Superparamagnetism of iron oxide particles is a prerequisite to MNP use, as well as an

underlying reason for its limitations. Indeed, MNPs tend to aggregate under a magnetic

field, potentially leading to cerebral and pulmonary embolism [6]. However, MNPs with

improved stability, as well as reduced toxicity and immunogenicity, can be synthesized by

employing biocompatible materials. Particle size should be small enough to remain in

circulation while navigating successfully through capillary networks [7]. Under acidic

conditions, iron is released and processed by common physiologic storage mechanisms [8].

Iron oxide MNPs have been approved as contrast agents for bioimaging by the US FDA [9].

Herein, we review the utilization of MNPs for specific clinical applications (Table 1). This

includes works by our own laboratories that have recently developed small magnetite

antiretroviral therapy (SMART) that can be applied as a theranostic modality, where drug

and magnetite are encased in a single polymer core enabling rapid assessment of

pharmacokinetic and pharmacodynamics by MRI [10].

MNP systems: translational design considerations

For successful development of drug delivery systems based on MNPs, several

physicochemical characteristics, particle stability, biocompatibility and drug loading

capacity of the system, as well as MNP characteristics, such as responsiveness to a magnetic

field, should be taken into consideration. The physicochemical characteristics, size

(hydrodynamic radius), surface charge, surface hydrophobicity and surface coating, as well

as shape, guide the stability, biocompatibility and biodistribution of the drug delivery

system.

While the hydrodynamic radius of the particle system impacts colloidal stability, core size of

the MNP correlates with responsiveness to a magnetic field [6]. Saturation magnetization of

MNPs (which governs the responsiveness to the magnetic field) is known to decrease with a

decrease in particle size [11]. In addition, it is known that particles with a hydrodynamic

radius <2 nm damage intracellular organelles due to their filtration through cellular

membranes [16]. Therefore, MNPs with hydrodynamic radius in the size range of 10–100

nm are considered optimal for in vivo delivery because they: are above the toxic threshold;

can escape from renal clearance and elimination by the reticuloendothelial system (RES);

and utilize MNPs with a core size big enough to maintain high saturation magnetization

values [17]. Nanoparticle shape also impacts biodistribution and biocompatibility. Cell

uptake of rod-shaped particles is greater than spherical particles for sizes >100 nm [18]. This

selectivity is reversed for particles <100 nm in size [18,19] and uptake of ligand-coated rod-

shaped nanoparticles can depend upon how they are presented to the cell and interact with

surface receptors [20]. Other studies have demonstrated that rod-shaped and nonspherical
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PEGylated nanoparticles exhibited prolonged systemic circulation compared with spherical

particles [21], in part due to decreased stimulation of phagocytic cells by rod-shaped/

nonspherical particles compared with spherical particles [21].

Surface charge/surface coating of MNPs is an additional critical component to govern

biodistribution and clearance of MNPs. MNPs have an intrinsic tendency to agglomerate due

to their high surface energy [22], although agglomeration can be prevented through

electrostatic/steric repulsion. Notably, surface charge guides MNP uptake and interactions

with the RES. Positively charged nanoparticles are taken up more rapidly by the cells when

compared with negatively charged or neutral particles [23] and a hydrophobic MNP surface

facilitates adsorption of plasma proteins (i.e., opsonization) and extracellular matrix,

resulting in rapid RES clearance. These surface properties can be counteracted by grafting a

hydrophilic layer onto the particle surface or coating them with a protective shell (a steric

barrier) [7]. Furthermore, the additional coating prevents MNP surface oxidation and can

provide surface chemistry for bioconjugation of targeting ligands and drugs [24]. The

targeting ligands can be antibodies, peptides or proteins that possess affinity for defined

target cells or tissues [25]. The strategy of ‘active targeting’, together with magnetic

targeting, holds promise to enhance delivery of drug encapsulated in MNPs to disease sites,

improving theranostic efficacy [26].

Hyperthermia

Magnetic hyperthermia is based on the concept that MNPs can generate heat using an

external alternating magnetic field (AMF), and temperatures above 37 °C result in

accelerated cell apoptosis/death. MNPs and magnetic fields have been employed for thermal

destruction of cancerous cells [27]. Magnetic hyperthermia can be used for tumor

management in conjunction with chemotherapy, radiotherapy and surgery. The specificity of

this approach lies in the hypersensitivity to higher temperatures exhibited by tumor cells

when compared with normal cells. Moreover, the degree of heat generation can be tailored

by tuning the magnetic properties of MNPs, as well as the external magnetic field

characteristics [6,28]. Based upon the extent of heat generation, MNP treatments are

separated into hyperthermic effects or thermoablation. This refers to cell death (or

carbonization) seen when cells are heated to 46–48 °C [6]. More specific and effective

heating regimens can be achieved when magnetic hyperthermia is used with another heating

source such as microwave, electromagnetic radiation [29] or ultrasound [30].

The ability of MNPs to induce hyperthermia depends on particle size. For example,

maghemite particles 11.2 nm in size exhibited a higher heating rate at a frequency of 700

kHz and field amplitude of 24.5 kA/m compared with smaller nanoparticles [31]. Moreover,

it has also been reported that for particles with a core size <12 nm, the specific absorption

rate (which can be referred to as ‘heating power’) increases slightly with an increase in

magnetic particle core size. However, for particles with a core size >12 nm, the increment in

size can be accompanied by diminished specific absorption rate [32].

MNPs can accumulate at tumor sites owing to the enhanced permeability and retention

effect due to the presence of unorganized and fenestrated blood vessels and impaired
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lymphatic drainage. Hyperthermia can be achieved at the tumor with little to no adverse

effects on surrounding healthy tissue. However, there are limitations to MNP hyperthermic

therapies. These include a failure to achieve effective concentration of MNPs in the tumor

due to clearance of MNPs by the RES [33]. Increasing MNP doses to promote therapeutic

outcomes is limited by the maximum tolerated dose [34]. Increasing the magnetic field

amplitude and/or frequency may lead to nonspecific eddy current heating of the surrounding

tissue and promote toxicities [35]. Promotion of selective accumulation of MNPs at the

tumor site can be facilitated by cancer-targeting ligands placed on the particle itself. For

example, it has been shown that anti-HER2 immunoliposomes encapsulating MNPs

permitted nanoparticle accumulation in breast cancer cells overexpressing HER2, followed

by tumor-specific hyperthermia, raising the local temperature by 8 °C [36]. Similarly, EGF

receptor-targeted inhalable MNPs were shown to selectively accumulate in non-small-cell

lung cancers. The potential of magnetic hyperthermia as an effective anticancer treatment

can certainly be facilitated by such targeted MNPs [37].

In addition to inducing cancer cell apoptosis, magnetic hyperthermia stimulates innate

immune responses. As tumor cell surveillance consists of natural killer cells and cytotoxic

lymphocytes these are activated at 42 °C serving to eliminate the tumor [38]. Further more,

local hyperthermia can result in homing of activated monocytes to the tumor through the

release of pro-inflammatory factors that include che-mokines and promote influx of natural

killer cells and cytotoxic T lymphocytes [39]. The mechanism for stimulation of the innate

immune response involves the release of dead cell protein contents, most notably heat shock

proteins, which activate monocytes from the tumor microenvironment. This is followed by

induction of proinflammatory cytokines and further recruitment of antigen-presenting cells.

Activation of the immune system in response to hyperthermia further diminishes invasion of

new tumor cells [40]. Together, heat triggered apoptosis and the associated immune

response can suppress both primary tumor mass and the metastatic lesions. Proof of concept

for effectiveness of hyperthermia treatment using MNPs was demonstrated in clinical

studies, where MNPs were used for thermotherapy of prostate tumors [12,13] and recurrent

glioblastoma multiforme [14]. The potential for thermotherapy was demonstrated in a

European clinical study where MNPs were injected directly into pancreatic tumors;

hyperthermic thermoablative temperatures were achieved in the prostate at low AMF

strength [12,13]. In another clinical study, MNPs instilled intratumorally into patients with

recurrent glioblastoma multiforme followed by heating using an AMF in conjunction with a

reduced radiation dose [14] increased overall patient survival with only moderate side

effects. These studies are promising, however, more work needs to be carried out to ensure

that healthy surrounding tissues are not damaged by the hyperthermia and that heat

distribution is evenly distributed throughout the tumor mass.

Bioimaging

Development of any effective treatment requires early and accurate noninvasive disease

diagnosis. To this end, several different medical scanning modalities have been developed,

such as PET, single-photon-emission computed tomography, optical fluorescence,

ultrasound and MRI. MRI, in contrast to other imaging modalities, offers an ability to

generate 3D images while providing superior spatial resolution and excellent signal-to-noise
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ratios without exposure to radiation. The underlying mechanism of MRI is alignment of

water protons in a static magnetic field, excitation of protons by a radiofrequency current

under an appropriate resonance frequency, followed by detection of proton relaxation

signals and conversion of relaxation signals into an image [6,41,42]. There are two types of

MRI contrast agents: contrast enhancement (T1) and negative contrast (T2). MNPs are

negative contrast (T2) agents. Upon exposure to an external magnetic field, the spin–spin

relaxation time (T2) of water molecules surrounding MNPs is significantly reduced,

resulting in darkening of the corresponding area in T2-weighted images. The extent to which

T2 is shortened is typically represented by spin–spin relaxivity (R2 = 1/T2), where a higher

R2 value implies enhanced contrast effects. The relaxivity coefficient (r2), determined as a

gradient of plots of R2 against Fe concentration, can be used to standardize contrast

enhancement. To date, a range of MNP formulations have been employed as MRI contrast

agents. Most notable of these are Feridex IV®, Endorem®, Lumiren®, Combidex® (all from

Advanced Magnetic Pharmaceuticals, MA, USA) and Resovist® (Bayer Schering Pharma

AG, Leverkusen, Germany).. Feridex was the first commercially available MNP formulation

and is commonly used in imaging liver lesions. Endorem and Resovist have been used for

the diagnosis of liver lesions and tumors, cardiac infarcts and brain lesions [11]. Lumiren

has been employed for imaging of the bowel and Combidex for metastases of the lymph

node [9]. However, two factors limit clinical application of MNP-based MRI contrast

agents. The first is low R2 values. There are several parameters, which correlate to R2

values, specifically R2 increases with saturation magnetization. In addition, MNPs can be

further doped with paramagnetic atoms (e.g., manganese) to enhance their contrast abilities

[43,44]. The second limiting factor is nonspecific uptake and clearance by the RES. MNPs,

especially those of >40 nm hydrodynamic radius, tend to accumulate in the liver and spleen,

which can be utilized to detect tumors or lesions in these organs [41]. However, non-specific

uptake of MNPs by the RES presents a major challenge to developing effective imaging

modalities of other organs [43]. To overcome this limitation and to increase the contrast

agent circulation time to desired tumor sites, strategies to prevent opsonization have been

developed [45,46]. For example, coating MNPs with poly(ethylene glycol) (PEG) provides a

steric barrier to RES clearance [47]. The improved circulation time allows utilizing the

enhanced permeability and retention effect that accompanies many solid tumors, thus

promoting accumulation of the contrast agent in tumors and allowing effective imaging of

tumor sites.

Moreover, conjugation of tumor-targeting ligands to the MNP surface can improve their

tumor-targeting capabilities [48]. Folic acid (FA)-targeted MNPs are produced for efficient

MRI detection of tumors that overexpress the folate receptor. Significant accumulation of

FA-targeted MNPs was reported in tumor xenografts [49]. Similarly, thermoresponsive

MNPs tagged with prostate cancer-specific R11 peptides were prepared for selective

accumulation of MNPs and imaging of prostate cancer [50]. Multimodality imaging probes

have also been developed, wherein MNPs are combined with another imaging modality such

as fluorescent dyes or radionuclides. Several systems were reported that incorporated the

fluorescent dyes fluorescein isothiocyanate [51], Dil (a lipophilic cationic indocarbocyanine

dye) [52] and indocyanine green [53] on the MNP surface to combine MRI with fluores-cent

Singh et al. Page 5

Nanomedicine (Lond). Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



imaging. Additional multimodality imaging was achieved by combining tumor-targeting

ligands, specifically oleanolic acid and 68Ga, for combined MRI and PET imaging [54].

More recently, MNPs were designed for image-guided drug delivery as novel theranostic

platforms. In recent studies, pH-sensitive MNPs conjugated with the antitumor drug

doxorubicin demonstrated improved antitumor efficacy with application of a magnetic field

[55]. In similar studies, doxorubicin-encapsulated MNPs were synthesized that allowed

simultaneous tumor-targeted delivery and sensitive MRI detection [56]. Recently, hybrid

polymersomes, constructed using micromixing, successfully incorporated the anticancer

drug camptothecin and MNPs. These types of theranostic MNP nanoconstructs have also

been engineered with the cancer-targeting peptide bombesin, as well as the fluorescent

marker dye AlexaFluor® 647 (Molecular Probes, Life Technologies, NY, USA) [57].

Theranostic uses for MNPs are being developed in our own laboratory [10]. SMART

particles for the diagnosis and treatment of HIV infection were manufactured by encasing

atazanavir and superparamagnetic iron oxide particles in a poly(lactic-co-glycolic) acid

matrix and coating with 1,2-distearoyl-sn-glycero-3-phosphocholine, and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-mPEG. These particles are taken up by mononuclear

phagocytes then stored and carried to sites of active viral replication. As a proof of concept,

MRI and drug quantitation were used to determine biodistribution of the SMART particles

following parenteral administration and demonstrated parallel distribution of magnetite and

drug. Such particles could enable rapid assessment of drug biodistribution and allow

screening of particles targeted to cells and tissues that harbor the virus (Figure 2).

Drug delivery

One of the limitations of most current therapeutics is their unfavorable pharmacokinetics

and nonspecifc biodistribution profiles, which cause toxicities to healthy tissues. To

overcome this limitation, nanoformulations are employed as a means to improve drug

pharmacokinetics and pharmacodynamics. Targeting to specific disease sites can prolong

circulation time and reduce drug dose and the occurrence of adverse effects, resulting in

improved therapeutic efficacy and safety. These nanoconstructs can be engineered to

undergo physical changes (e.g., degradation of shell) upon exposure to an external stimulus

(e.g., temperature, light, pH and magnetic gradients) that lead to release of loaded drug at

intended pathologic sites [58]. MNPs are also a promising approach to site-specific delivery

of therapeutic payloads. These nanoparticles can be targeted to and retained at a desired site

until the encapsulated drug is released by means of an applied external magnetic gradient;

thereby reducing unwanted drug adverse effects by limiting nonspecific distribution [26,59].

The concept of targeted drug delivery by magnetic guidance (through an external or

implanted magnetic gradient) was originally conceived in the early 1960s. The first

preclinical experiments exploited magnetic guidance to hold magnetic microspheres (1–3

µm in size) within large arteries in dogs [60]. Subsequently, external magnetic fields were

employed to accumulate magnetic albumin microspheres loaded with anticancer drug at a

tumor site [61]. Since then, there have been a plethora of reports on the development of

improved MNP–drug formulations for cancer therapy (e.g., doxorubicin, paclitaxel and
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methotrexate) [62–65]. In a Phase I clinical study, drug targeting employing MNPs is well

tolerated in patients with advanced stage cancer and can deliver anticancer drug(s) to the

tumor areas. Although the response to the treatment in most patients was low, such

investigations provided proof of concept for the use of magnetic drug targeting [15].

For penetration into deeper tissues, implant magnets can be used. Implant-assisted magnetic

drug targeting was evaluated in a pig model of thrombolytic therapy, with no short-term

adverse effects [66]. Still, magnetically targeted MNPs have some limitations such as

nonspecific uptake by the RES and difficulty in crossing the tissue and cellular barriers,

which can be partially overcome with the use of MNPs with higher magnetic susceptibility

and a stronger force field [28] or by combining additional targeting techniques. MNPs can

be functionalized with cell-specific targeting molecules to accelerate intracellular

accumulation. Several recent reports have demonstrated enhanced cancer cell targeting and

drug delivery by drug-loaded MNPs that had been functionalized with FA in the presence of

an applied magnetic field. Such carrier systems provided higher uptake in cancer cells than

healthy cells and confined apoptosis to the cancer cells [62,67–68]. MNPs loaded with two

drugs (i.e., the antitumor drug doxorubicin and the antiangiocardiopathy drug verapamil),

followed by modification with the tumor targeting ligand cyclo(Arg-Gly-Asp-D-Phe-Lys)

peptide demonstrated improved pharmacokinetics and pharmacody-namics. Rodent studies

demonstrated biodistribution of the dual drug-loaded particles to the tumor site with

reduction in tumor growth without untoward toxicity [69]. MNPs have also been developed

to treat brain disorders by enhancing delivery of drugs across the blood–brain barrier (BBB)

[70–73].

Magnetofection

Gene therapy, defined as expression of genetic material (DNA, siRNA and antisense

oligodeoxynucleotides) in a patient’s cells for therapeutic benefit, holds promise for treating

genetically based diseases. However, instability of genetic material in physiological fluid

and inadequate cellular diffusion impede therapeutic outcomes. To surmount these

challenges, novel gene delivery methods have been employed for efficient gene transfection

[74,75]. For instance, nanoparticle-based delivery systems have provided platforms for

enabling gene therapy to reach its full potential by accelerating nucleic acid delivery to

tissues and cells [76,77].

To this end, magnetofection, defined as delivery of genetic material using cationic MNPs

guided by magnetic forces, has been tested in proof-of-concept studies. Magnetofection was

first described at the turn of the century [78,79]. Since its development, several research

groups have optimized and implemented the concept of magnetic targeting and transfection

of genetic materials. MNPs have been employed successfully for in vivo and in vitro

transfection of plasmids, antisense oligodeoxynucleotides, siRNA and shRNA [48,80, 81].

For optimal transfection of genetic material, cell viability must be maintained. For this, the

physicochemical properties of MNPs are crucial. Magnetic susceptibility of MNPs should be

adequate enough to concentrate the vectors at the designated cells/tissues [82]. For efficient

loading of nucleic acid, MNPs could be bridged to the nucleic acid with cationic polymers
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such as polyethyleneimine (PEI) and protamine sulfate [83,84]. PEI is the most frequently

employed polymer for nucleic acid delivery because it facilitates lysosomal escape via the

‘proton-sponge’ mechanism [85]. The design can be improved further by grafting PEG to

PEI, which subsequently reduces PEI-associated cytotoxicity [83]. Nucleic acids must be

encapsulated inside the nanocarrier to maintain stability until they are released inside the cell

[7].

Magnetofection can be an efficient and ‘cell-friendly’ approach for genetic manipulation of

stem cells by introducing foreign DNA without adversely interfering with the cell cycle.

Higher transfection efficacy of an enhanced green fluorescent protein reporter gene in

murine embryonic stem cells with no adverse effects on cell differentiation/proliferation was

observed using magnetofection compared with conventional transfection [86]. Similarly,

magnetofection of primary human mesenchymal stem cells with green fluorescent protein

plasmids resulted in higher transfection efficiency and improved cell viability [87].

Although, the underlying mechanism for enhanced transfection with MNPs is unclear, it is

proposed that the static magnetic field assists transfection by accelerating particle interaction

with cells, followed by uptake through endocytosis [88].

Magnetic separation

Magnetic separation is widely used for the separation and purification of cells [89],

recombinant proteins [90], DNA [91] and monoclonal antibodies [92]. Separation of these

biological constituents using MNPs involves attachment of biological constituents to

surface-modified MNPs, followed by separation with the aid of an external magnetic force

[93]. Cell separation using MNPs involves interaction of surface-modified particles with a

cell, followed by internalization via receptor-mediated endocytosis or phagocytosis and

subsequent separation using an applied magnetic field. The surface of the MNP is usually

engineered with ligands that are efficiently internalized by the targeting cell, such as insulin,

lactoferrin and FA, since these receptors are frequently expressed on the cell surface [11]. A

novel column-free magnetic separation system using tetrameric antibody complexes with

dual specificity for dextran-coated MNPs and the CD11b epitope of microglia was

developed. This approach resulted in efficient and rapid separation of microglia with a

recovery of >97% purity [94]. In a similar study, magnetic cell separation technology was

developed for the isolation of murine postnatal brain microglia, with high viability using

CD11b-coated magnetic beads [95]. MNPs tagged with anti-CD4 antibody have also been

used for the isolation of CD4+ T lymphocytes from whole human blood with a purity in

excess of 95% [96].

Therapeutic proteins and monoclonal antibodies are fast growing markets with an estimated

global value of US$107 billion and US$86 billion by 2015, respectively. To meet the

challenges of large-scale production, isolation and purification of these biopharmaceutics is

of paramount importance. Magnetic separation is a well-established procedure for isolation

and purification of recombinant protein and monoclonal bodies [93]. Immobilized MNPs

modified with affinity tags, such as ion-exchange groups, can be used to separate tagged

proteins with high efficiency and selectivity. Using this technique, negatively charged MNPs

were shown to exhibit significant binding capacities for cytochrome C (640 mg/g) through
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cation exchange [97]. Surface functionalization of MNPs with metal ions such as Ni2+ and

Co2+ has been used to selectively capture polyhistidine-tagged (His-tagged) proteins from

cell extracts with subsequent separation using an appropriately applied magnetic field [98–

100]. In other studies, boronic acid-functionalized MNPs have been used extensively for

one-step capture of human monoclonal antibodies with high yield and purity [101,102].

Tissue engineering

Tissue engineering offers new possibilities to surmount the organ transplantation crisis,

especially due to shortage of donor organs. Tissue engineering involves isolation of cells

from healthy tissue or stem cells (embryonic and pluripotent stem cells) and seeding cells

onto a 3D scaffold. For this purpose, the scaffold is required to be biocompatible and

nontoxic. Such scaffolds are frequently prepared from ‘body– friendly’ biocompatible and

biodegradable polymers, sponges and agarose. The colonization of cells on these scaffolds

can occur directly inside the body or can be initiated under ex vivo conditions followed by

transplantation into the patient for regeneration of damaged tissue [7,103]. Alternatively, a

bottom-up approach is practiced that comprises patterning cells onto a predefined structure,

which directs further maturation of the tissue construct [104]. In both cases, growth factors

are frequently added to accelerate proliferation and differentiation of the cells. In addition to

growth factors, physical signaling such as mechanical stimulation and electrical signaling

may be required for appropriate growth of artificial tissue. These signals attempt to mimic

the biological signals inside the body required for cellular proliferation and differentiation

[105].

It is difficult, however, to construct a functional organ that mimics the precision and

complexity of the organ in vivo. The major challenge facing tissue engineering is an

ineffective cell scaffold that impairs cell seeding and cell–cell interaction, especially

between heterotypic cells and cell layers [7]. To overcome this difficulty, magnetic force-

based mechanical stimulation has been used. Cells labeled with MNPs and subjected to a

magnetic force accumulate evenly over a scaffold and demonstrate homogenous growth in a

manipulated direction. The shape of the artificial tissue is controlled by manipulating the

magnetic force [106,107]. Magnetic cationic liposomes (MCLs) have been studied

extensively for use in tissue engineering. MCLs employed for tissue engineering are usually

made up of MNPs encapsulated into cationic liposomes composed of a lipid mixture

consisting of N-(α-trimethylammonioacetyl)-didodecyl-D-glutamate chloride, dilauroyl

phosphatidylcholine and dioleoylphosphati-dyl-ethanolamine in a 1:2:2 molar ratio

[108,109]. MCLs were used to construct heterotypic layers of rat hepatocytes and human

aortic endothelial cells (HAECs). The magnetically labeled HAECs preferentially migrated

and adhered to the hepatocyte monolayers under the influence of an external magnetic force.

By contrast, in the absence of a magnetic field, HAECs did not adhere to rat hepatocytes and

did not construct a heterotypic co-culture layer, which was marked by less albumin secretion

compared with the heterotypic layer [108]. MCLs may also be used for the successful

regeneration of skeletal muscle tissue using 3D tissue-like constructs from MCL-labeled

cells under an external magnetic force [109]. Although overall magnetic force-based

processes in tissue engineering have been widely established, at a certain point of growth in

a 3D cell cluster, the magnetic gradient reaches a value that is insufficient to concentrate
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cells. To address this issue, a novel magnetic pin system was designed to generate uniform

3D cell clusters. Combining an iron pin and magnet provided a concentrated and strong

magnetic field at a specific point and reinforced efficient cell–cell interactions to construct

uniform 3D cell clusters with enhanced cell functions [110].

Nanoneuromedicine

The CNS, and the brain in particular, is protected by the BBB, which protects against

infiltration by bacteria, viruses and other foreign materials [111]. Approximately 98% of

potentially active drugs for brain-related disorders are unable to reach therapeutically

relevant concentrations in the brain, primarily because of the BBB [59]. It follows that the

efficacies of CNS-active agents could be predicted by their ability to cross the BBB. Only

small lipid-soluble molecules with a molecular mass <400 Da can cross the BBB via passive

diffusion and reach the brain at therapeutic concentrations. Unfortunately, most CNS drugs

either have a molecular mass greater than the desired window or are too hydrophilic to enter

into the brain by passive diffusion [111]. Many drugs are administered at high doses in order

to achieve therapeutic levels in the brain; this results in peripheral side effects [112]. Most

pharmaceutical agents in the absence of drug delivery technology get into the brain via

traditional, yet ineffective brain delivery systems, such as BBB disruption [113] and

transcranial delivery [114]. Opening of the BBB, such as osmotic opening of tight junctions,

even for transient periods is associated with neuropathological changes, which lead to

chronic toxicity and jeopardized clinical outcomes [115]. Transcranial delivery is limited to

delivery of drugs around the injection site and is ineffective for uniform distribution of drug

to the entire brain [114]. In order to deliver drugs to the brain, there is a need to develop safe

and efficacious brain drug delivery technologies. To date, various brain-targeting strategies

and delivery systems have been developed to cope with this problem. Some of those used

prominently include: chemical drug delivery systems, such as lipid-mediated delivery [116],

prodrug approaches [117] and lock-in delivery [118]; specific re-engineering of

pharmaceutical agents to be substrates for endogenous transporters found on brain

endothelial capillaries [119]; molecular Trojan horses [120]; and the use of carrier systems

such as liposomes [121], dendrimers [122] and polymeric nanoparticles [123]. MNPs of

hydrodynamic radius <100 nm are not immediately recognized by mononuclear phagocytes

[17] and have a longer blood half-life and a potential for CNS imaging and drug delivery

because of their ability to be attracted to the CNS with the application of an external

magnetic field. MNP-based nanoconstructs have demonstrated their utility for cellular

labeling/cell-separation [96], targeted delivery [61] and hyperthermia, but have only recently

been investigated for brain targeting [124]. However, recent studies have indicated that

MNP-based biofunctional nanoconstructs, under the infuence of an external magnetic force,

can indeed be a promising platform to circumvent the BBB and deliver therapeutic cargo to

the CNS (Figure 3) [26,59].

In general, two kinds of brain-targeting strategies were employed using MNPs. In the first

strategy, an external magnetic field is applied to direct the movement of MNP-encapsulated

therapeutic cargo to the brain. Magnetic therapy using MNPs prolonged the survival of

glioma-bearing rats by enhancing the brain concentration of paclitaxel [125]. In a similar

report, in a rat model, magnetic targeting prolonged the retention of MNPs within gliomas,
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resulting in a fivefold increase in nanoparticle accumulation within targeted tumors

compared with nontargeted tumors [4]. In a second rodent study, intracarotid administration

of PEI-modified MNPs in conjunction with magnetic targeting resulted in increased

accumulation at brain tumor sites [126,127]. In addition, delivery of imaging agents was

improved significantly using MNPs with an applied magnetic field [59].

In the second strategy, MNPs are modified with various functional ligands including

antibodies, peptides and proteins, which target specific receptors on brain cells most notably

on the endothelial cells of the BBB [26,71]. As one example, penetration of MNPs modified

with a transferrin receptor antibody into the brain is increased through interaction with the

transferrin receptor on brain endothelial cells [128]. There are many other bioactive moieties

that can be used to modify MNPs to enhance their transport through the BBB via receptor-

mediated endocytosis. Qiao et al. demonstrated that modification of PEG-coated MNPs with

lactoferrin-enhanced the permeability of the nanoparticles across the BBB by receptor-

mediated endocytosis via interaction with the lactoferrin receptor on brain endothelial cells

[129]. MNPs can also be modified with other functional groups that aid penetration across

the BBB through interaction with key BBB proteins. For example, the HIV-1 TAT protein

interacts with tight junction proteins and adhesion molecules to enhance BBB permeability

[130]. When TAT was used to functionalize magnetic polymeric liposomes, permeability

across the BBB was enhanced compared with nonfunctionalized MNPs when a magnetic

field was applied, and significant accumulation of particles at a site of spinal cord injury was

observed [131].

Challenges

MNPs have been developed for numerous biomedical applications, especially in the area of

drug delivery and targeting. However, to translate these studies to clinical application many

issues still must be resolved. In this section, we will briefly discuss some of the notable

challenges facing the development of MNPs for in vivo applications. First, given the vast

scope of MNP formulations for numerous biomedical applications, the studies evaluating

potential toxic effects of MNPs are very limited in number. In spite of hopeful in vivo data

that support MNP safety in preclinical and clinical studies [132–134], discrepancies exist in

the literature concerning the safety of MNPs for human use. Several groups have reported

that excessive release of free iron from MNPs facilitates the generation of free radicals,

which can lead to oxidative stress and disruption in liver metabolism [135,136]. Pulmonary

toxicity of MNPs was observed in adult male Wistar rats at a dose of 5 mg/kg iron [137]. In

a recent study, polyacrylic acid-coated MNPs at a concentration of 10 mg/kg in mice did not

impair kidney function, but temporarily reduced blood pressure by decreasing arterial

contractility [138]. Furthermore, excess accumulation of MNPs in the brain has been

reported to lead to oxidative stress through abnormal interaction of iron with brain proteins

(amyloid-β peptide or neuromelanin), which have been associated with the development of

neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease and multiple

sclerosis [139,140]. Thus, it is critical to identify the toxicities of MNP formulations prior to

clinical use. It has been well accepted that physiochemical properties (e.g., shape, size,

surface charge and surface coating) of MNPs are critical in determining the toxic potential
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of MNPs [141]. However, more experimental evidence is required to identify a safe dose

and formulation of MNPs with optimal clinical benefits and reduced risks.

Another challenge in the development of MNPs for appropriate biomedical applications is

limiting the clearance of MNPs by the liver and spleen. In this regard, the size and surface

coating of MNPs are critical to avoiding scavenging by the RES and reducing aggregation

[142]. Moreover, with appropriate surface coating and conjugation of specific targeting

ligands, along with magnetic targeting, it is possible to enhance the accumulation of drug-

loaded MNPs at the target tissue [26,143]. Furthermore, improved magnetic properties of

MNPs can optimize MNPs for drug delivery, MRI and hyperthermia. Use of ferrites (e.g.,

CoFe2O4 and MnFe2O4) and fabrication of core-shell nanoconstruct systems have provided

improvements in hyperthermia applications [144]. Another pitfall for using MNPs as drug

delivery vehicles is the lack of an effective magnetic field gradient for deep organs and

blood vessels. To overcome this obstacle, the use of superconducting magnets such as

SmBaCuO and YBaCuO, which can exert strong magnetic gradients to penetrate the skin

surface to a depth of 20 mm has been proposed [145]. Much effort will be required to

translate MNP technology to clinical applications. Despite the pros and cons of using MNP-

based nanoconstructs for in vivo applications, superparamagnetic iron oxide nanoparticles

are one of the nanomedicines that have been approved for clinical use to date.

Conclusion

The developing interest in the biomedical application of nanotechnology has led to the

development of nanomedicines. In recent years, extensive research has shown that MNPs

can be a promising tool for translational biomedical applications. In the last decade, MNP-

based therapeutics have led to new opportunities for diverse medical therapeutic disciplines

such as hyperthermia, tissue implant engineering, gene delivery, drug delivery and

magnetic-based protein purifcations. MNP synthesis and development take advantage of

integration strategies in physics, chemistry, biology and engineering. To date, various MNP

formulations have been developed for MRI contrast agents, magnetic hyperthermia and

image-guided drug delivery. The last decade has witnessed an expansion of MNP research

activities to realize the potential of therapeutic drug delivery exceeding those seen with

conventional systems. While MNP-based technologies appear to hold a significant potential

for a myriad of biomedical applications, the toxic potential of MNPs cannot be overlooked.

Further studies are required to identify a safe dose and formulation of MNPs with optimal

clinical benefits and reduced risks. Moreover, advancements in nanotechnology are needed

such as development of particles with enhanced magnetic properties, polymeric coating and

the integration of multifunctional biological moieties. Understanding the relationship

between the physicochemical properties of MNP constructs and their behavior will yield full

translational potential of these nanoparticles.

Future perspective

MNP-based nanoparticulate systems with functional properties that allow distinct

compositions of magnetic gradients have the potential for a range of novel clinical

interventions. The ability to manipulate and remotely control certain cell–drug interactions
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would endow clinicians and scientists with powerful tools to investigate cellular function

and signaling to ameliorate disease. Potential uses of MNPs include tissue implants, organ

regeneration, drug delivery and improved diagnostics. Examples include magnetic ferrofluid

utilized in eye surgery, magnetic targeting of cancers and tumor imaging [15,146,147].

Interdisciplinary research bringing together the fields of biology, chemistry, physics and

engineering can yield new MNP-based technologies for improving global health.
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Executive summary

Magnetic nanoparticle systems: translational design considerations

• Magnetic nanoparticle (MNP)-based biocomposites are a promising theranostic

platform.

• The versatility of MNP-based nanotechnology is attributed to particle response

to an external magnetic field.

• Drug targeting is facilitated through functionalization of MNPs with bioactive

moieties.

• Superparamagnetism of MNPs impedes particle aggregation.

Challenges

• While MNPs appears to hold significant potential, long-term evaluation is

required to minimize human health risks.

• MNPs require thorough pre-evaluation for biocompatibility and biodistribution.

• MNPs should be eliminated from the body quickly once they have achieved

therapeutic end points.

• The development of MNPs for therapeutic purposes is in a nascent stage.

Future perspective

• Collaborative multidisciplinary science will herald next-generation MNPs,

where theranostics will ultimately be part of standard medical practices.
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Figure 1. Basic features and biological applications of multifunctional biocomposite magnetic
nanoparticles
PEG: Poly(ethylene glycol); PLA: Poly(lactic acid); PGA: Poly(glycolic acid); PLGA:

Poly(lactic-co-glycolic) acid; RES: Reticuloendothelial system.
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Figure 2. Small magnetitie antiretroviral particles for speeding pharmacokinetic and
pharmacodynamic evaluations
(A) The composition of SMART particles is described. The particle core is comprised of

magnetite and ATV distributed within a PLGA matrix. The particle core is coated with lipid,

PEG-conjugated lipid (PEG-lipid) and lipid conjugated with putative targeting ligands, such

as FOL-modified PEG (PEG-FOL-lipid). (B) SMART particles can be targeted to the FOLR

and parentally administered to mice. (C) In blood, they are taken up by circulating

monocytes or monocyte-derived macrophages. Through particle interaction with the
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FOLRβ, they are trafficked into tissues reflective of active viral growth. (D)
Pharmacokinetics and pharmacodynamics of the targeted SMART particles can be

monitored by MRI, where the presence of magnetite PEG-FOL-lipid-coated particles appear

blackened in T2-weighted images. ATV: Atazanavir; FOL: Folate; FOLR: Folate receptor;

O/W: Oil/water; PEG: Poly(ethylene glycol); PLGA: Poly(lactic-co-glycolic) acid; SMART:

Small magnetite antiretroviral therapy.
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Figure 3. Magnetic targeting
No accumulation of magnetic nanoparticles (MNPs) occurs in the absence of a magnetic

field, whereas under the influence of this field, MNPs alone or in combination with

therapeutic cargo accumulate at a destined site. This includes the brain. Targeting efficiency

of MNPs can be further improved by modifying the MNP surface using cell-specific

targeting moieties, for instance, transferrin for brain targeting.
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Table 1

Magnetic nanoparticle systems in clinical use and clinical studies.

Name (type) Application Administration Ref.

In clinical use

Feridex® IV (ferumoxides; Advanced Magnetic
Pharmaceuticals, MA, USA)

MRI of the liver and spleen iv. [11]

Endorem® (ferumoxides; Advanced Magnetic
Pharmaceuticals)

MRI of liver lesions, cardiac infarts and brain
lesions

iv. [11]

Resovist® (ferucarbotran; SPIONs; Bayer Schering
Pharma AG, Leverkusen, Germany)

MRI of liver lesions, cardiac infarts and brain
lesions

iv. [11]

Lumiren® (SPIONs; Advanced Magnetic
Pharmaceuticals)

MRI of the bowel iv. [9]

Combidex® (SPIONs; Advanced Magnetic
Pharmaceuticals)

MRI of lymph node metastases iv. [9]

Phase I clinical studies

Magnetofluid MFL 082AS (SPIONs; Magforce
AG, Berlin, Germany)

Hyperthermia treatment of prostate tumors Transperineally into tumor [12, 13]

NanoTherm® AS1 (magnetic fluid MFL AS1;
SPIONs; Magforce AG)

Hyperthermia treatment of glioblastoma
multiforme

Instillation into tumor [14]

Ferrofluid epirubicin (Nano-Technologies GBR,
Berlin, Germany)

Magnetic targeted delivery of 4’-
epidoxorubicin into solid tumors

iv. [15]

iv.: Intravenous; SPION: Superparamagnetic iron oxide nanoparticle.
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