49 research outputs found

    Inflammatory Cytokines During Cardiac Rehabilitation After Heart Surgery and Their Association to Postoperative Atrial Fibrillation

    Get PDF
    Inflammation is associated with atrial fibrillation (AF), but little is known about the association of AF with the inflammatory serum cytokines after the acute postoperative phase. Thus, we aimed to explore how plasma cytokines concentrations modify during a 3-week cardiac rehabilitation after heart surgery, comparing patients who developed postoperative AF (POAF) and those with permanent AF with patients free from AF (NoAF group). We enrolled 100 consecutive patients and 40 healthy volunteers as a control group. At the beginning of cardiac rehabilitation, 11 days after surgery, serum levels of MPO, PTX3, ADAM17, sST2, IL-25, and IL-33 were dramatically higher, whereas TNFa and IL-37 levels were much lower in NoAF, POAF, and permanent AF patients than in the healthy volunteers. After rehabilitation, most of the cytokines changed tending towards normalization. POAF patients (35% of the total) had higher body mass index and abdominal adiposity than NoAF patients, but similar general characteristics and risk factors for POAF. However, ADAM-17 and IL-25 were always lower in POAF than in NoAF patients, suggesting a protective role of IL-25 and ADAM 17 against POAF occurrence. This finding could impact on therapeutic strategies focusing on the postoperative prophylactic antiarrhythmic interventions

    Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: A pilot study

    Get PDF
    Pathogenesis of autoimmune disorders, including multiple sclerosis (MS), has been linked to an alteration of the resident microbial commensal community and of the interplay between the microbiota and the immune system. Dietary components such as fiber, acting on microbiota composition, could, in principle, result in immune modulation and, thus, could be used to obtain beneficial outcomes for patients. We verified this hypothesis in a pilot study involving two groups of clinically similar relapsing-remitting (RR) MS patients who had undergone either a high-vegetable/low-protein diet (HV/LP diet group; N = 10) or a "Western Diet" (WD group; N = 10) for at least 12 months. Gut microbiota composition, analyzed by 16 S V4 rRNA gene sequencing and immunological profiles, was examined after a minimum of 12 months of diet. Results showed that, in the HV/LP diet group compared to the WD group: (1) Lachnospiraceae family was significantly more abundant; (2) IL-17-producing T CD4+ lymphocytes (p = 0.04) and PD-1 expressing T CD4+ lymphocytes (p = 0.0004) were significantly decreased; and (3) PD-L1 expressing monocytes (p = 0.009) were significantly increased. In the HV/LP diet group, positive correlations between Lachnospiraceae and both CD14+/IL-10+ and CD14+/TGF\uce\ub2+monocytes (RSp= 0.707, p = 0.05, and RSp= 0.73, p = 0.04, respectively), as well as between Lachnospiraceae and CD4+/CD25+/FoxP3+ T lymphocytes (RSp= 0.68, p = 0.02) were observed. Evaluation of clinical parameters showed that in the HV/LP diet group alone the relapse rate during the 12 months follow-up period and the Expanded Disability Status Scale score at the end of the study period were significantly reduced. Diet modulates dysbiosis and improves clinical parameters in MS patients by increasing anti-inflammatory circuits. Because Lachnospiraceae favor Treg differentiation as well as TGF\uce\ub2 and IL-10 production this effect could be associated with an increase of these bacteria in the microbiota

    Monosodium urate crystals activate the inflammasome in primary progressive multiple sclerosis

    Get PDF
    Inflammasome-driven inflammation is postulated to play a role in multiple sclerosis (MS), but there is no direct evidence that the nod-like receptor protein 3 (NLRP3) inflammasome is involved in MS pathogenesis. Uric acid was shown to be one of the "danger" signals involved in the activation of NLRP3 inflammasome; notably, the concentration of uric acid is increased in the serum and in the cerebrospinal fluid of MS individuals. To better investigate the role of the NLRP3 inflammasome in MS-associated inflammation, we primed with lipopolysaccharide and stimulated with monosodium urate crystals PBMCs of 41 MS patients with different disease phenotypes. Eleven individuals with primary progressive MS (PPMS), 10 individuals with stable relapsing-remitting MS (SMS), 10 individuals with acute relapsing-remitting MS (AMS), 10 individuals with benign MS were analyzed; 10 healthy controls were enrolled as well in the study. The expression of the NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), caspase-1, caspase-8, IL-1\u3b2, and IL-18 inflammasome genes was evaluated by RT-PCR. NLRP3 and ASC-speck protein expression was analyzed by FlowSight AMNIS, whereas production of the pro-inflammatory cytokines IL-1\u3b2 and IL-18 and of caspase-1 and caspase-8 was measured by ELISA in supernatants. Results showed that uric acid serum concentration was significantly increased in PPMS; in these and in AMS patients, mRNA for NLRP3, ASC, and IL-18 was upregulated as well, but caspase-8 mRNA was upregulated only in PPMS. Expression of NLRP3 and ASC-speck protein was significantly increased in PPMS, SMS, and AMS patients, but IL-18 and caspase-8 production was significantly increased only in PPMS, in whom a direct correlation between hyperuricemia and caspase-8 was detected. The NLRP3/caspase-8 inflammasome pathway is activated in PPMS, possibly as a consequence of hyperuricemia. Therapeutic strategies reducing NLRP3 activation and/or lowering hyperuricemia could be useful in the therapy of PPMS

    Alterations of natural killer cells activatory molecules phenotype and function in mothers of ASD children: a pilot study

    Get PDF
    IntroductionAutism spectrum disorder (ASD) is accompanied by complex immune alterations and inflammation, and the possible role played by Natural Killer (NK) in such alterations is only barely understood.MethodsTo address this question we analysed activating and inhibitory NK receptors, as well as NK cells phenotype and function in a group of mothers of children who developed ASD (ASD-MO; N=24) comparing results to those obtained in mothers of healthy children who did not develop (HC-MO; N=25).ResultsResults showed that in ASD-MO compared to HC-MO: 1) NK cells expressing the inhibitory receptor ILT2 are significantly decreased; 2) the activating HLA-G14bp+ polymorphism is more frequently observed and is correlated with the decrease of ILT2-expressing cells; 3) the CD56bright and CD56dim NK subsets are increased; 4) IFNÎł and TNF production is reduced; and 5) perforin- and granzymes-releasing NK cells are increased even in unstimulated conditions and could not be upregulated by mitogenic stimulation.DiscussionResults herein reinforce the hypothesis that ASD relatives present traits similar to, but not as severe as the defining features of ASD (Autism endophenotype) and identify a role for NK cells impairment in generating the inflammatory milieu that is observed in ASD

    Determinants of Disability in Multiple Sclerosis: An Immunological and MRI Study

    Get PDF
    Multiple sclerosis (MS) is characterized by a wide interpatient clinical variability and available biomarkers of disease severity still have suboptimal reliability. We aimed to assess immunological and MRI-derived measures of brain tissue damage in patients with different motor impairment degrees, for in vivo investigating the pathogenesis of MS-related disability. Twenty-two benign (B), 26 secondary progressive (SP), and 11 early, nondisabled relapsing-remitting (RR) MS patients and 37 healthy controls (HC) underwent conventional and diffusion tensor brain MRI and, as regards MS patients, immunophenotypic and functional analysis of stimulated peripheral blood mononuclear cells (PBMC). Corticospinal tract (CST) fractional anisotropy and grey matter volume were lower and CST diffusivity was higher in SPMS compared to RRMS and BMS patients. CD14+IL6+ and CD4+IL25+ cell percentages were higher in BMS than in SPMS patients. A multivariable model having EDSS as the dependent variable retained the following independent predictors: grey matter volume, CD14+IL6+ and CD4+IL25+ cell percentages. In patients without motor impairment after long-lasting MS, the grey matter and CST damage degree seem to remain as low as in the earlier disease stages and an immunological pattern suggestive of balanced pro- and anti-inflammatory activity is observed. MRI-derived and immunological measures might be used as complementary biomarkers of MS severity

    CD4+ T Cell Depletion, Immune Activation and Increased Production of Regulatory T Cells in the Thymus of HIV-Infected Individuals

    Get PDF
    Mechanisms by which HIV affects the thymus are multiple and only partially known, and the role of thymic dysfunction in HIV/AIDS immunopathogenesis remains poorly understood. To evaluate the effects of HIV infection on intra-thymic precursors of T cells in HIV-infected adults, we conducted a detailed immunophenotypic study of thymic tissue isolated from 7 HIV-infected and 10 HIV-negative adults who were to undergo heart surgery. We found that thymuses of HIV-infected individuals were characterized by a relative depletion of CD4+ single positive T cells and a corresponding enrichment of CD8+ single positive T cells. In addition, thymocytes derived from HIV-infected subjects showed increased levels of activated and proliferating cells. Our analysis also revealed a decreased expression of interleukin-7 receptor in early thymocytes from HIV-infected individuals, along with an increase in this same expression in mature double- and single-positive cells. Frequency of regulatory T cells (CD25+FoxP3+) was significantly increased in HIV-infected thymuses, particularly in priorly-committed CD4 single positive cells. Our data suggest that HIV infection is associated with a complex set of changes in the immunophenotype of thymocytes, including a reduction of intrathymic CD4+ T cell precursors, increased expression of activation markers, changes in the expression pattern of IL-7R and enrichment of T regulatory cells generation

    The Role of the Inflammasome in Neurodegenerative Diseases

    No full text
    Neurodegenerative diseases are chronic, progressive disorders that occur in the central nervous system (CNS). They are characterized by the loss of neuronal structure and function and are associated with inflammation. Inflammation of the CNS is called neuroinflammation, which has been implicated in most neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Much evidence indicates that these different conditions share a common inflammatory mechanism: the activation of the inflammasome complex in peripheral monocytes and in microglia, with the consequent production of high quantities of the pro-inflammatory cytokines IL-1β and IL-18. Inflammasomes are a group of multimeric signaling complexes that include a sensor Nod-like receptor (NLR) molecule, the adaptor protein ASC, and caspase-1. The NLRP3 inflammasome is currently the best-characterized inflammasome. Multiple signals, which are potentially provided in combination and include endogenous danger signals and pathogens, trigger the formation of an active inflammasome, which, in turn, will stimulate the cleavage and the release of bioactive cytokines including IL-1β and IL-18. In this review, we will summarize results implicating the inflammasome as a pivotal player in the pathogenesis of neurodegenerative diseases and discuss how compounds that hamper the activation of the NLRP3 inflammasome could offer novel therapeutic avenues for these diseases

    The Role of the Inflammasome in Neurodegenerative Diseases

    No full text
    Neurodegenerative diseases are chronic, progressive disorders that occur in the central nervous system (CNS). They are characterized by the loss of neuronal structure and function and are associated with inflammation. Inflammation of the CNS is called neuroinflammation, which has been implicated in most neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Much evidence indicates that these different conditions share a common inflammatory mechanism: the activation of the inflammasome complex in peripheral monocytes and in microglia, with the consequent production of high quantities of the pro-inflammatory cytokines IL-1β and IL-18. Inflammasomes are a group of multimeric signaling complexes that include a sensor Nod-like receptor (NLR) molecule, the adaptor protein ASC, and caspase-1. The NLRP3 inflammasome is currently the best-characterized inflammasome. Multiple signals, which are potentially provided in combination and include endogenous danger signals and pathogens, trigger the formation of an active inflammasome, which, in turn, will stimulate the cleavage and the release of bioactive cytokines including IL-1β and IL-18. In this review, we will summarize results implicating the inflammasome as a pivotal player in the pathogenesis of neurodegenerative diseases and discuss how compounds that hamper the activation of the NLRP3 inflammasome could offer novel therapeutic avenues for these diseases
    corecore