6 research outputs found

    Bovine gene polymorphisms related to fat deposition and meat tenderness

    Get PDF
    Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus

    Genome wide association for the outcome of fixed time artificial insemination of Brahman heifers in northern Australia

    No full text
    Fixed-time AI (FTAI) is a powerful tool for genetic improvement of extensively managed beef cattle. A genomewide association study (GWAS) was conducted to investigate genes and genetic markers associated with the outcome (pregnant or not pregnant) of FTAI in 614 commercial Brahman heifers genotyped for 18,895 SNP and imputed to 51,588 SNP. The likelihood of Brahman heifers becoming pregnant after hormonal treatment to synchronize ovulation followed by FTAI was influenced by the Bos indicus content of their genomes, as determined by a principal component analysis. The principal component analysis involved comparisons between the studied heifers and populations of known Bos taurus and B. indicus ancestry. The heritability of FTAI outcome was h = 0.18, which is higher than for most other reproductive outcome traits. The number of SNP associated with FTAI outcome was 101 (P < 0.001, false discovery rate = 0.53). Compared with all SNP tested, associated SNP had a tendency for highly divergent allelic frequencies between B. indicus and B. taurus. Associated SNP were located in nearly all chromosomes, a result that shows a complex genetic architecture that is typical of highly complex traits with low heritability. Considering this and previous GWAS that examined Brahman heifer puberty and postpartum anestrus interval, 3 genomic regions emerge as important for overall Brahman heifer fertility, which mapped to chromosomes 1, 7, and 9. Further analyses, including improved genome annotation, are required to elucidate the link between these regions and heifer fertility. Additional studies are needed to confirm SNP and gene associations reported herein and further elucidate the genetics of FTAI outcome. Future GWAS should target other Braham populations and additional cattle breeds with FTAI records, including breeds with higher B. taurus ancestry

    Polymorphisms and genes associated with\ua0puberty\ua0in heifers

    No full text
    Puberty onset is a multifactorial process influenced by genetic determinants and environmental conditions, especially nutritional status. Genes, genetic variations, and regulatory networks compose the molecular basis of achieving puberty. In this article, we reviewed the discovery of multiple polymorphisms and genes associated with heifer puberty phenotypes and discuss the opportunities to use this evolving knowledge of genetic determinants for breeding early pubertal Bos indicus-influenced cattle. The discovery of polymorphisms and genes was mainly achieved through candidate gene studies, quantitative trait loci analyses, genome-wide association studies, and recently, global gene expression studies (transcriptome). These studies are recapitulated and summarized in the current review
    corecore