21 research outputs found

    Evaluation of Three Commercial Interferon-γ Assays in a Bovine Tuberculosis Free Population

    Full text link
    The interferon-γ assay has been used worldwide as an ancillary test for the diagnosis of bovine tuberculosis (bTB). This study aimed to describe, based on the bTB-free status in Switzerland, the difference of applying a more stringent cutoff point of 0.05 compared with 0.1 for bTB surveillance. Moreover, the effect of time between blood collection and stimulation, culture results, optical density values, and the influence of testing different breeds were evaluated. Blood samples from a total of 118 healthy cows older than 6 months were tested with three commercial interferon-gamma assays. To confirm the bTB-free status of the tested animals and to investigate potential cross-reactions with nontuberculous mycobacteria, pulmonary and abdominal lymph nodes in addition to ileal mucosa from each cattle were used for the detection of viable Mycobacteria spp. by specific culture. Significant differences regarding the proportion of false-positive results between the two Bovigam tests and between Bovigam 2G and ID Screen were found. Samples analyzed with Bovigam 2G were 2.5 [95% confidence interval (CI) 1.6–3.9] times more likely to yield a false-positive test result than samples analyzed with Bovigam TB. Similarly, the odds ratio (OR) for testing samples false-positive with ID Screen compared with Bovigam TB was 1.9 (95% CI 1.21–2.9). The OR for testing false-positive with ID Screen compared with Bovigam 2G was less to equally likely with an OR of 0.75 (95% CI 0.5–1.1). When using a cutoff of 0.05 instead of 0.1, the OR for a false-positive test result was 2.2 (95% CI 1.6–3.1). Samples tested after 6 h compared with a delayed stimulation time of 22–24 h were more likely to yield a false-positive test result with an OR of 3.9 (95% CI 2.7–5.6). In conclusion, applying a more stringent cutoff of 0.05 with the Bovigam 2G kit generates a questionable high number of false-positive results of one of three tested animals. Furthermore, specific breeds might show an increased risk to result false-positive in the Bovigam 2G and the ID Screen assays

    Evaluation of Three Commercial Interferon-γ Assays in a Bovine Tuberculosis Free Population

    Get PDF
    The interferon-γ assay has been used worldwide as an ancillary test for the diagnosis of bovine tuberculosis (bTB). This study aimed to describe, based on the bTB-free status in Switzerland, the difference of applying a more stringent cutoff point of 0.05 compared with 0.1 for bTB surveillance. Moreover, the effect of time between blood collection and stimulation, culture results, optical density values, and the influence of testing different breeds were evaluated. Blood samples from a total of 118 healthy cows older than 6 months were tested with three commercial interferon-gamma assays. To confirm the bTB-free status of the tested animals and to investigate potential cross-reactions with nontuberculous mycobacteria, pulmonary and abdominal lymph nodes in addition to ileal mucosa from each cattle were used for the detection of viable Mycobacteria spp. by specific culture. Significant differences regarding the proportion of false-positive results between the two Bovigam tests and between Bovigam 2G and ID Screen were found. Samples analyzed with Bovigam 2G were 2.5 [95% confidence interval (CI) 1.6–3.9] times more likely to yield a false-positive test result than samples analyzed with Bovigam TB. Similarly, the odds ratio (OR) for testing samples false-positive with ID Screen compared with Bovigam TB was 1.9 (95% CI 1.21–2.9). The OR for testing false-positive with ID Screen compared with Bovigam 2G was less to equally likely with an OR of 0.75 (95% CI 0.5–1.1). When using a cutoff of 0.05 instead of 0.1, the OR for a false-positive test result was 2.2 (95% CI 1.6–3.1). Samples tested after 6 h compared with a delayed stimulation time of 22–24 h were more likely to yield a false-positive test result with an OR of 3.9 (95% CI 2.7–5.6). In conclusion, applying a more stringent cutoff of 0.05 with the Bovigam 2G kit generates a questionable high number of false-positive results of one of three tested animals. Furthermore, specific breeds might show an increased risk to result false-positive in the Bovigam 2G and the ID Screen assays

    Population structure and virulence gene profiles of Streptococcus agalactiae collected from different hosts worldwide

    Get PDF
    Streptococcus agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, in addition to various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data are urgently needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from a diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates obtained from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different S. agalactiae strains were identified and further analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. In particular, several strains were detected in both humans and cattle, and several canine strains were also detected in samples from human, bovine, and porcine hosts. The findings of our study suggest that although S. agalactiae is well adapted to various hosts including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The virulence and resistance gene profiles presented enable new insights into interspecies transmission and make a crucial contribution to the identification of suitable targets for therapeutic agents and vaccines

    Population structure and virulence gene profiles of Streptococcus agalactiae collected worldwide from different hosts

    Full text link
    Streptococcus (S.) agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, as well as various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data is needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from different sources and geographical origins. To this end, 373 S. agalactiae isolates from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different strains were identified. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. The findings of our study suggest that while S. agalactiae is well adapted to various hosts (including humans, cattle, dogs and other species), interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The presented virulence and resistance gene profiles enable new insights into interspecies transmission and make a crucial contribution in the identification of suitable targets for therapeutic agents and vaccines

    Complete genome sequence of Anoxybacillus flavithermus strain 52-1A isolated from a heat processed powdered milk concentrate

    Get PDF
    The thermophilic spore-forming bacterium Anoxybacillus flavithermus is responsible for powdered milk product spoilage, and its presence in dairy processing environments is a concern. Here, the complete genome sequence of the A. flavithermus strain 52-1A isolated from a heat-processed powdered milk product concentrate in Switzerland is presented

    Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam

    Full text link
    To examine to what extent fresh vegetables imported into Switzerland represent carriers of extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae, 169 samples of different types of fresh vegetables imported into Switzerland from the Dominican Republic, India, Thailand, and Vietnam were analyzed. Overall, 25.4% of the vegetable samples yielded one or more ESBL-producing Enterobacteriaceae, 78.3% of which were multidrug resistant. Sixty isolates were obtained: Escherichia coli, 26; Klebsiella pneumoniae, 26; Enterobacter cloacae, 6; Enterobacter aerogenes, 1; and Cronobacter sakazakii, 1. We found 29 isolates producing CTX-M-15, 8 producing CTX-M-14, 7 producing CTX-M-55, 3 producing CTX-M-65, 1 each producing CTX-M-1, CTX-M-3, CTX-M-27, and CTX-M-63, 5 producing SHV-2, 3 producing SHV-12, and 1 producing SHV-2a. Four of the E. coli isolates belonged to epidemiologically important clones: CTX-M-15-producing B2:ST131 (1 isolate), D:ST405 (1 isolate), and D:ST38 (2 isolates). One of the D:ST38 isolates belonged to the extraintestinal enteroaggregative E. coli (EAEC) D:ST38 lineage. Two of the K. pneumoniae isolates belonged to the epidemic clones sequence type 15 (ST15) and ST147. The occurrence of antibiotic-resistant pathogenic and commensal Enterobacteriaceae in imported agricultural foodstuffs constitutes a source of ESBL genes and a concern for food safety

    Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis

    Get PDF
    BackgroundEscherichia coli is an important aetiological agent of bovine mastitis worldwide.MethodsIn this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method.ResultsThe most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively.ConclusionAmong the study’s sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.</jats:sec

    Sequence types and antimicrobial resistance profiles of Streptococcus uberis isolated from bovine mastitis

    Get PDF
    Bovine mastitis is one of the most common diseases among dairy cows and causes high economic losses in dairy industries worldwide. Streptococcus uberis is one of the most frequently identified pathogens causing the disease. In this study, 153 S. uberis strains isolated from mastitis milk samples were analyzed for their genetic diversity using multi locus sequence typing (MLST). Moreover, antibiotic susceptibility testing was performed using a microdilution assay and 11 antimicrobial agents including penicillin, which is the first line agent for treatment of bovine mastitis in Switzerland. MLST was successful for 152 (99.3%) of the strains. Overall, 103 different sequence types (STs) were determined, including 91 novel STs. S. uberis belonging to clonal complex (CC) 5 represented 47 (30.7%) of the mastitis cases. Two (1.3%) of the strains belonged to CC86 and one (0.7%) to CC143. The population structure identified in this work suggests that environmental transmission is the predominant route of infection in herds in Switzerland. Antimicrobial susceptibility testing determined a resistance rate of 11.8% for pirlimycin and elevated MIC90-values for marbofloxacin as well as for erythromycin. This study highlights the importance of genetic characterization of S. uberis and the need for veterinary breakpoints for surveillance of antimicrobial resistance in S. uberis

    Draft genome sequence of Psychrobacter okhotskensis strain 5179-1A, isolated from a raw cured ham storage crate

    Get PDF
    We present the draft genome sequence of Psychrobacter okhotskensis strain 5179-1A, which was isolated from a raw cured ham storage crate. Its size and GC content are 3.4 Mb and 43.4%, respectively. The 16S rRNA sequences of strain 5179-1A and P. okhotskensis MD17T are 100% identical

    Microarray based genetic profiling of Staphylococcus aureus isolated from abattoir byproducts of pork origin

    Get PDF
    Many parts of pork meat processing are currently not used for human consumption in Switzerland, although they are of great nutritional value. Therefore, data on the occurrence of pathogenic organisms on byproducts is extremely scarce and the prevalence and population structure of Staphylococcus aureus on meat processing sidestreams is unknown. Hence, abattoir byproducts of pork origin including ear, forefoot, heart, intestine, liver, rib bone, sternum, bladder, stomach, hind foot and tongue originating from six abattoirs were screened for S. aureus. The obtained isolates were investigated by spa typing and DNA microarray analysis to reveal their genomic profile and population structure. The prevalence of S. aureus was generally low with a mean of 8%. In total, 40 S. aureus strains were detected and assigned to 12 spa types (t015, t1491, t1778, t091, t337, t899, t2922, t7439, t1333, t208, t4049, t034) and seven clonal complexes (CC1, CC7, CC9, CC30, CC45, CC49, CC398). Detected enterotoxin genes included sea, seb, sec, seh, sel and egc encoded toxin genes seg, sei, sem, sen, seo, and seu. None of the isolates harbored genes conferring methicillin resistance, but blaZ/I/R genes causing penicillin resistance were frequently found. In addition, strains from CC398 exhibited tetM and tetK, conferring tetracycline resistance. Similarity calculations based on microarray profiles revealed no association of clonal complexes with particular body parts, but revealed a certain correspondence of clonal complex and originating abattoir
    corecore