5 research outputs found

    Biocatalysts based on papain associates with chitosan nanoparticles

    No full text
    The research purpose was to develop and study biocatalysts based on papain associates with chitosan nanoparticles. We obtained medium and high molecular weight chitosan nanoparticles, both with and without ascorbic acid . When the papainna-noparticles complexes with ascorbic acid were formed, the catalytic activity of the enzyme increased by 3 % for medium molecular weight chitosan and by 16 % for high molecular weight chitosan. After 168 hours of incubation in 0.05 M of Tris-HCl buffer (pH 7.5) at 37 °C, the free enzyme retained 15 % of its catalytic activity, whereas its associates with chitosan nanoparticles exhibited ~ 30 %. The papain complex with chitosan nanoparticles and ascorbic acid exhibited 40 % of the enzyme catalytic activity. We simulated the bonds and interactions within the chitosan-ascorbic acid-papain complex. The proposed biocatalysts have high prospects for effective use in cosmetology, biomedicine, and pharmacy

    Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain

    No full text
    Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan−1) and specific activity (U mg protein−1), leading to the preservation of more than 90% of the initial total activity (U mL−1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6–7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness

    Carboxymethyl Cellulose-Based Polymers as Promising Matrices for Ficin Immobilization

    No full text
    The present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and N,N-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates’ formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme. This is due to the modulation of the conformation of ficin globule and of the enzyme active site by weak physical interactions involving catalytically valuable amino acids. The results obtained can extend the practical use of ficin in biomedicine and biotechnology

    Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features

    No full text
    Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan—carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate—during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation
    corecore