8 research outputs found

    Perinatal hypoxia: different effects of the inhibitors of GABA transporters GAT1 and GAT3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals

    Get PDF
    Aim To analyze the effects of highly selective blocker GAT1, NO-711, and substrate inhibitor GAT3, β-alanine, on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals (synaptosomes) after perinatal hypoxia. Methods Animals were divided into two groups: control (n = 17) and hypoxia (n = 12). Rats in the hypoxia group underwent hypoxia and seizures (airtight chamber, 4% O2 and 96% N2) at the age of 10-12 postnatal days and were used in the experiments 8-9 weeks after hypoxia. Results In cortical synaptosomes, the effects of NO-711 (30 μΜ) and β-alanine (100 μΜ) on [3H]GABA uptake were similar in control and hypoxia groups. In hippocampal synaptosomes, NO-711 inhibited 84.3% of the initial velocity of [3H]GABA uptake in normal conditions and 80.1% after hypoxia, whereas the effect of β-alanine was increased after hypoxia from 14.4% to 22.1%. In thalamic synaptosomes, the effect of NO-711 was decreased by 79.6% in controls and by 70.9% in hypoxia group, whereas the effect of β-alanine was increased after hypoxia from 20.2% to 30.2%. Conclusions The effectiveness of β-alanine to influence GABA uptake was increased in hippocampal and thalamic nerve terminals as a result of perinatal hypoxia and the effectiveness of NO-711 in thalamic nerve terminals was decreased. These results may indicate changes in the ratio of active GAT1/GAT3 expressed in the plasma membrane of nerve terminals after perinatal hypoxia. We showed a possibility to modulate non-GAT1 GABA transporter activity in different brain regions by exogenous and endogenous β-alanin

    Disposable facemask waste combustion emits neuroactive smoke particulate matter

    No full text
    Abstract Tremendous deposits of disposable medical facemask waste after the COVID-19 pandemic require improvement of waste management practice according to WHO report 2022, moreover facemasks are still in use around the world to protect against numerous airborne infections. Here, water-suspended smoke preparations from the combustion of disposable medical facemasks (polypropylene fibers) were collected; size, zeta potential, surface groups of smoke particulate matter were determined by dynamic light scattering, FTIR and Raman spectroscopy, and their optical properties were characterized. Neurochemical study using nerve terminals isolated from rat cortex revealed a significant decrease in the initial rate of the uptake/accumulation of excitatory and inhibitory neurotransmitters, L-[14C]glutamate and [3H]GABA, and exocytotic release, and also an increase in the extracellular level of these neurotransmitters. Fluorescent measurements revealed that ROS generation induced by hydrogen peroxide and glutamate receptor agonist kainate decreased in nerve terminals. A decrease in the membrane potential of nerve terminals and isolated neurons, the mitochondrial potential and synaptic vesicle acidification was also shown. Therefore, accidental or intentional utilization of disposable medical facemask waste by combustion results in the release of neuroactive ultrafine particulate matter to the environment, thereby contributing to plastic-associated pollution of air and water resources and neuropathology development and expansion

    A comparative multi-level toxicity assessment of carbon-based Gd-free dots and Gd-doped nanohybrids from coffee waste: hematology, biochemistry, histopathology and neurobiology study

    No full text
    Abstract Here, a comparative toxicity assessment of precursor carbon dots from coffee waste (cofCDs) obtained using green chemistry principles and Gd-doped nanohybrids (cofNHs) was performed using hematological, biochemical, histopathological assays in vivo (CD1 mice, intraperitoneal administration, 14 days), and neurochemical approach in vitro (rat cortex nerve terminals, synaptosomes). Serum biochemistry data revealed similar changes in cofCDs and cofNHs-treated groups, i.e. no changes in liver enzymes' activities and creatinine, but decreased urea and total protein values. Hematology data demonstrated increased lymphocytes and concomitantly decreased granulocytes in both groups, which could evidence inflammatory processes in the organism and was confirmed by liver histopathology; decreased red blood cell-associated parameters and platelet count, and increased mean platelet volume, which might indicate concerns with platelet maturation and was confirmed by spleen histopathology. So, relative safety of both cofCDs and cofNHs for kidney, liver and spleen was shown, whereas there were concerns about platelet maturation and erythropoiesis. In acute neurotoxicity study, cofCDs and cofNHs (0.01 mg/ml) did not affect the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminal preparations. Therefore, cofNHs demonstrated minimal changes in serum biochemistry and hematology assays, had no acute neurotoxicity signs, and can be considered as perspective biocompatible non-toxic theragnostic agent

    Essential variables for air quality estimation

    No full text
    Within this survey we describe the conceptual architecture of the infrastructure to measure PM2.5/PM10 concentration in the atmosphere over the Kyiv city using modern monitoring instruments. We define the requirements for information tools and network for informing Kyiv city community on the state of PM pollutions that will be created. This infrastructure will provide long-term PM2.5/PM10 observations that could be included in the AirBase network. The comprehensive review of in-situ and satellite measurements of PM2.5/PM10 is provided as well as the description current state-of-the-art for Air Quality monitoring with intelligent sensors and systems in Ukraine as-awhole and in Kyiv in particular. It is proposed to apply the concept of essential variables (EVs) used in Earth Observation to identify the variables that should be measured in priority when designing, deploying and maintaining observation systems. In this study we use and validate the global air quality products from Copernicus Atmosphere Monitoring Service obtained from modeling by GEOS-Chem model and other sources. The influence of PM and aerosols on a human health is estimated in terms of possible diseases and dangerous concentrations
    corecore