14 research outputs found

    Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models

    Get PDF
    Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy.publishedVersio

    The Role of <i>BRCA1/2</i>-Mutated Tumor Microenvironment in Breast Cancer

    No full text
    Taking into account the factors of high incidence rate, prevalence and mortality, breast cancer represents a crucial social and economic burden. Most cases of breast cancer develop as a consequence of somatic mutations accumulating in mammary epithelial cells throughout lifetime and approximately 5–10% can be ascribed to monogenic predispositions. Even though the role of genetic predispositions in breast cancer is well described in the context of genetics, very little is known about the role of the microenvironment carrying the same aberrant cells impaired by the germline mutation in the breast cancer development and progression. Based on the clinical observations, carcinomas carrying mutations in hereditary tumor-suppressor genes involved in maintaining genome integrity such as BRCA1/2 have worse prognosis and aggressive behavior. One of the mechanisms clarifying the aggressive nature of BRCA-associated tumors implies alterations within the surrounding adipose tissue itself. The objective of this review is to look at the role of BRCA1/2 mutations in the context of breast tumor microenvironment and plausible mechanisms by which it contributes to the aggressive behavior of the tumor cells

    Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer

    No full text
    Abstract Although solid tumors comprise malignant cells, they also contain many different non-malignant cell types in their micro-environment. The cellular components of the tumor stroma consist of immune and endothelial cells combined with a heterogeneous population of stromal cells which include cancer-associated fibroblasts. The bi-directional interactions between tumor and stromal cells therefore substantially affect tumor cell biology. Herein, we discuss current available information on these interactions in breast cancer chemo-resistance. It is acknowledged that stromal cells extrinsically alter tumor cell drug responses with profound consequences for therapy efficiency, and it is therefore essential to understand the molecular mechanisms which contribute to these substantial alterations because they provide potential targets for improved cancer therapy. Although breast cancer patient survival has improved over the last decades, chemo-resistance still remains a significant obstacle to successful treatment. Appreciating the important experimental evidence of mesenchymal stromal cells and cancer-associated fibroblast involvement in breast cancer clinical practice can therefore have important therapeutic implications

    Characterization of mesenchymal stem cells of "no-options" patients with critical limb ischemia treated by autologous bone marrow mononuclear cells.

    Get PDF
    Application of autologous bone marrow mononuclear cells to "no option" patients with advanced critical limb ischemia (CLI) prevented major limb amputation in 73% patients during the 6-month follow-up. We examined which properties of bone marrow stromal cells also known as bone-marrow derived mesenchymal stem cells of responding and non-responding patients are important for amputation-free survival.Mesenchymal stem cells of 41 patients with CLI unsuitable for revascularisation were isolated from mononuclear bone marrow concentrate used for their treatment. Based on the clinical outcome of the treatment, we divided patients into two groups: responders and non-responders. Biological properties of responders' and non-responders' mesenchymal stem cells were characterized according to their ability to multiply, to differentiate in vitro, quantitative expression of cell surface markers, secretion of 27 cytokines, chemokines and growth factors, and to the relative expression of 15 mesenchymal stem cells important genes. Secretome comparison between responders (n=27) and non-responders (n=14) revealed significantly higher secretion values of IL-4, IL-6 and MIP-1b in the group of responders. The expression of cell markers CD44 and CD90 in mesenchymal stem cells from responders was significantly higher compared to non-responders (p<0.01). The expression of mesenchymal stem cells surface markers that was analyzed in 22 patients did not differ between diabetic (n=13) and non-diabetic (n=9) patient groups. Statistically significant higher expression of E-cadherin and PDX-1/IPF1 genes was found in non-responders, while expression of Snail was higher in responders.The quality of mesenchymal stem cells shown in the expression of cell surface markers, secreted factors and stem cell genes plays an important role in therapeutic outcome. Paracrine mechanisms are main drivers in the induction of reparatory processes in CLI patients. Differences in mesenchymal stem cells properties are discussed in relation to their involvement in the reparatory process

    Inflammation-Based Scores Increase the Prognostic Value of Circulating Tumor Cells in Primary Breast Cancer

    No full text
    A correlation between circulating tumor cells (CTCs) and monocytes in metastatic breast cancer (BC), where CTCs and monocyte-to-lymphocyte ratio (MLR) were predictors of overall survival (OS), was recently shown. Herein, we aimed to assess the association between CTCs and the complete blood count (CBC)-derived inflammation-based scores in 284 primary BC patients. CTCs were determined in CD45-depleted peripheral blood mononuclear cells by real time-PCR. This method allowed us to detect a subset of CTCs with an epithelial-to-mesenchymal transition phenotype (CTC EMT), previously associated with inferior outcomes in primary BC. In the present study, CTC EMT positivity (hazard ratio (HR) = 2.4; 95% CI 1.20&ndash;4.66, p = 0.013) and elevated neutrophil-to-lymphocyte ratio (NLR) (HR = 2.20; 95% CI 1.07&ndash;4.55; p = 0.033) were associated with shorter progression-free survival (PFS) in primary BC patients. Multivariate analysis showed that CTC EMT-positive patients with NLR &ge; 3 had 8.6 times increased risk of disease recurrence (95% CI 2.35&ndash;31.48, p = 0.001) compared with CTC EMT-negative patients with NLR &lt; 3. Similarly, disease recurrence was 13.14 times more likely in CTC EMT-positive patients with MLR &ge; 0.34 (95% CI 4.35&ndash;39.67, p &lt; 0.001). Given its low methodological and financial demands, the CBC-derived inflammation-based score determination could, after broader validation, significantly improve the prognostication of BC patients

    Expression of cell surface markers characterizing MSCs.

    No full text
    <p>(A) Expression of MSCs markers on the surface of mesenchymal stem cells of group of responders versus non responders (** - statistic significance is ≤ 0.01; * - statistic significance is ≤ 0.02). (B) Expression of MSCs markers on the surface of mesenchymal stem cells of group of diabetic patients (n=13) versus non diabetic (n=9).</p

    Secretion of factors from MSCs and gene expression.

    No full text
    <p>(<b>A</b>) Secretome comparison of several factors of responders (n=27) and non-responders (n=14) CLI patients; For detection of cytokines, chemokines and growth factors Bio-Plex Pro Human Cytokine 27-plex Assay from Bio-Rad was used. The concentration of each factor was calculated per mg of total proteins in 24 hour conditioned medium. The values of growth factors detected in control medium were deducted from values found in conditioned medium. (B) Relative expression of 15 genes typical for MSCs on the level of proteins. Cell extracts of MSCs in early passage of seven non-responders and eight responders were examined by Proteome Profiler Human Pluripotent Stem Cell Array.</p

    Doubling time of continually cultivated MSCs from CLI patients in comparison to healthy young donor.

    No full text
    <p>(<b>A</b>) Ability of MSCs of CLI patient to differentiate to osteogenic, adipogenic and chondrogenic lineages; (<b>B</b>) Doubling time of MSCs of CLI patients in first passage. The value is an average of two independent estimations; (<b>C</b>) Doubling time of continually cultivated MSCs from four CLI patients in comparison to healthy young donor. Lines represent the trend.</p

    Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models

    No full text
    Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy
    corecore