18 research outputs found
Influence of charge carriers on corrugation of suspended graphene
Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation
Phase Transformation in UHMWPE Reactor Powders Synthesized on Various Catalysts in Mechanical and Thermal Fields
Nowadays, a solvent-free method for production of high performance fibers directly from ultrahigh-molecular-weight polyethylene (UHMWPE) reactor powder is being actively developed. It causes the interest in the morphology of the reactor particles and their behavior in thermal and mechanical fields. Changes in the phase composition in virgin particles of ultra-high molecular-weight polyethylene reactor powders and in particles of powders compressed at room temperature under different pressures were studied in real time using synchrotron radiation with heating in the range of 300–370 K. It was found that the content of the monoclinic phase in reactor powders depends on the type of catalyst used for synthesis and on the applied pressure. It is shown that there are monoclinic phases of different nature: a structurally stabilized monoclinic phase formed during synthesis, and a monoclinic phase resulting from plastic deformation during compaction at room temperature. The behavior of these phases in temperature and mechanical fields is compared
X-ray determination of threading dislocation densities in GaN/Al<inf>2</inf>O<inf>3</inf>(0001) films grown by metalorganic vapor phase epitaxy
cited By 13International audienceDensities of a- and a+c-type threading dislocations for a series of GaN films grown in different modes by metalorganic vapor phase epitaxy are determined from the x-ray diffraction profiles in skew geometry. The reciprocal space maps are also studied. Theory of x-ray scattering from crystals with dislocations is extended in order to take into account contribution from both threading and misfit dislocations. The broadening of the reciprocal space maps along the surface normal and the rotation of the intensity distribution ellipse is attributed to misfit dislocations at the interface. We find that the presence of a sharp AlN/GaN interface leads to an ordering of misfit dislocations and reduces strain inhomogeneity in GaN films
Amphiphilic Acetylacetone-Based Carbon Dots
On-going development of carbon dots (CDs) for different applications calls for search of novel methods for their synthesis and surface functionalization. For fabrication of light-emitting devices (LEDs), CDs should be soluble in non-polar solvents that are used for ink-printing of their functional layers, apart from the obvious requirement of bright luminescence. Herein, we introduce amphiphilic CDs synthesized from a mixture of benzoic acid and ethylenediamine in acetylacetone, which satisfy both above mentioned requirements. These CDs are quasi-spherical nanoparticles 20-50 nm in size, holding aliphatic, carbonyl, amide, imine, and carbamate groups at the surface which renders them amphiphilic and soluble in a variety of substances with relative polarity ranging from 0.002 to 1, such as toluene, chloroform, alcohols, and water. By variation of the molar ratio of benzoic acid and ethylenediamine, an optimal value for photoluminescence quantum yield of 36 % in non-polar solvents is achieved. Importantly, these CDs are easily mixable with a charge transport polymer – polyvinylcarbazole, a common component of organic LEDs. As a demonstration of use of developed amphiphilic CDs in LEDs, green emitting charge-injection devices are fabricated with a broad emission band centered at 515 nm, maximal luminance of 1716 cd/m2, and ССT of 5627 K
Graphene Oxide Chemistry Management via the Use of KMnO4/K2Cr2O7 Oxidizing Agents
In this paper, we propose a facile approach to the management of graphene oxide (GO) chemistry via its synthesis using KMnO4/K2Cr2O7 oxidizing agents at different ratios. Using Fourier Transformed Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Absorption Spectroscopy, we show that the number of basal-plane and edge-located oxygenic groups can be controllably tuned by altering the KMnO4/K2Cr2O7 ratio. The linear two-fold reduction in the number of the hydroxyls and epoxides with the simultaneous three-fold rise in the content of carbonyls and carboxyls is indicated upon the transition from KMnO4 to K2Cr2O7 as a predominant oxidizing agent. The effect of the oxidation mixture’s composition on the structure of the synthesized GOs is also comprehensively studied by means of X-ray diffraction, Raman spectroscopy, transmission electron microscopy, atomic-force microscopy, optical microscopy, and the laser diffraction method. The nanoscale corrugation of the GO platelets with the increase of the K2Cr2O7 content is signified, whereas the 10–100 μm lateral size, lamellar, and defect-free structure is demonstrated for all of the synthesized GOs regardless of the KMnO4/K2Cr2O7 ratio. The proposed method for the synthesis of GO with the desired chemistry opens up new horizons for the development of graphene-based materials with tunable functional properties