15,057 research outputs found

    Antiglycation activity and HT-29 cellular uptake of aloe-emodin, aloin, and aloe arborescens leaf extracts

    Get PDF
    Aloe arborescens is a relevant species largely used in traditional medicine of several countries. In particular, the decoction of leaves is prepared for various medicinal purposes including antidiabetic care. The aim of this research was the study of the antiglycation activity of two A. arborescens leaf extracts and isolated compounds: aloin and aloe-emodin. These phytoconstituents were quantitatively assessed in methanolic and hydroalcoholic extracts using high performance liquid chromatography (HPLC) analysis. In addition, the total phenolic and flavonoid contents were detected. In order to study their potential use in diabetic conditions, the antiglycation and antiradical properties of the two extracts and aloin and aloe-emodin were investigated by means of bovine serum albumin (BSA) and 1,1-diphenyl-2-picryl-hydrazil (DPPH) assays; further, their cytotoxicity in HT-29 human colon adenocarcinoma cells was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Furthermore, the ability of aloin and aloe-emodin to permeate the cellular membranes of HT-29 cells was determined in order to estimate their potential in vivo absorption. This assessment indicated that aloe-emodin can substantially pass through cell membranes (~20%), whereas aloin did not permeate into HT-29 cells. Overall, the data show that both the methanolic and the hydroalcoholic A. arborescens extracts determine significant inhibition of glycation and free-radical persistence, without any cytotoxic activity. The data also show that the antiglycation and the antiradical activities of aloin and aloe-emodin are lower than those of the two extracts. In relation to the permeability study, only aloe-emodin is able to cross HT-29 cellular membranes, showing the attitude to pass through the intestinal layer. Overall, the present data surely support the traditional use of A. arborescens leaf extracts against hyperglycemic conditions, while aloin and aloe-emodin as potential drugs need further study

    Sensitivity below the standard quantum limit in gravitational wave detectors with Michelson-Fabry-Perot readout

    Full text link
    We calculate the quantum noise limited displacement sensitivity of a Michelson-Fabry-Perot (MFP) with detuned cavities, followed by phase-sensitive homodyne detection. We show that the standard quantum limit can be surpassed even with resonant cavities and without any signal-recycling mirror nor additional cavities. Indeed, thanks to the homodyne detection, the output field quadrature can be chosen in such a way to cancel the effect of input amplitude fluctuations, i.e., eliminating the force noise. With detuned cavities, the modified opto-mechanical susceptivity allows to reach unlimited sensitivity for large enough (yet finite) optical power. Our expressions include mirror losses and cavity delay effect, for a realistic comparison with experiments. Our study is particularly devoted to gravitational wave detectors and we consider both an interferometer with free-falling mirrors, and a MFP as readout for a massive detector. In the latter case, the sensitivity curve of the recently conceived 'DUAL' detector, based on two acoustic modes, is obtained

    Corporate Hierarchies and the Size of Nations: Theory and Evidence

    Get PDF
    Corporate organization varies within a country and across countries with country size. The paper starts by establishing some facts about corporate organization based on unique data of 660 Austrian and German corporations. The larger country (Germany) has larger firms with flatter more decentral corporate hierarchies compared to the smaller country (Austria). Firms in the larger country change their organization less fast than firms in the smaller country. Over time firms have been introducing less hierarchical organizations by delegating power to lower levels of the corporation. We develop a theory which explains these facts and which links these features to the trade environment that countries and firms face. We introduce firms with internal hierarchies in a Krugman (1980) model of trade. We show that international trade and the toughness of competition in international markets induce a power struggle in firms which eventually leads to decentralized corporate hierarchies. We offer econometric evidence which is consistent with the models predictions

    Power in the Multinational Corporation in Industry Equilibrium

    Get PDF
    Recent theories of the multinational corporation introduce the property rights model of the firm and examine whether to integrate our outsource firm activities locally or to a foreign country. This paper focus instead on the internal organization of the multinational corporation by examining the power allocation between headquarters and subsidiaries. We provide a framework to analyse the interaction between the decision to serve the local market by exporting or FDI, market acces and the optimal mode of organization of the multinational corporation. We find that subsidiary managers are given most autonomy in their decision how to run the firm at intermediate levels of local competition. We then provide comparative statics for changes in fixed FDI entry costs and trade costs, information technology, the number of local competitors, and in the size of the local market

    Tilted excitation implies odd periodic resonances

    Get PDF
    This work was supported by the Brazilian agencies FAPESP and CNPq. MSB also acknowledges the Engineering and Physical Sciences Research Council grant Ref. EP/I032606/1. GID thanks Felipe A. C. Pereira for fruitful discussions.Peer reviewedPostprin

    Interplay between the magnetic anisotropy contributions of Cobalt nanowires

    Get PDF
    We report on the magnetic properties and the crystallographic structure of the cobalt nanowire arrays as a function of their nanoscale dimensions. X-ray diffraction measurements show the appearance of an in-plane HCP-Co phase for nanowires with 50 nm diameter, suggesting a partial reorientation of the magnetocrystalline anisotropy axis along the membrane plane with increasing pore diameter. No significant changes in the magnetic behavior of the nanowire system are observed with decreasing temperature, indicating that the effective magnetoelastic anisotropy does not play a dominant role in the remagnetization processes of individual nanowires. An enhancement of the total magnetic anisotropy is found at room temperature with a decreasing nanowire diameter-to-length ratio (d/L), a result that is quantitatively analyzed on the basis of a simplified shape anisotropy model.Comment: 8 pages, 4 figure

    Dynamical two-mode squeezing of thermal fluctuations in a cavity opto-mechanical system

    Full text link
    We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity opto-mechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing enhanced squeezing effect surpassing the stationary 3dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum opto-mechanical modes

    Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    Full text link
    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Young modulus of the coating. The models that we have developed and validated are important for the design of oscillating micro-mirrors with high quality factor and, consequently, low thermal noise. Such devices are useful in general for high sensitivity sensors, and in particular for experiments of quantum opto-mechanics
    corecore