20 research outputs found
Soluble beta amyloid evokes alteration in brain norepinephrine levels: role of nitric oxide and interleukin-1
Strong evidence showed neurotoxic properties of beta amyloid (Aβ) and its pivotal role in the Alzheimer's disease (AD) pathogenesis. Beside, experimental data suggest that Aβ may have physiological roles considering that such soluble peptide is produced and secreted during normal cellular activity. There is now suggestive evidence that neurodegenerative conditions, like AD, involve nitric oxide (NO) in their pathogenesis. Nitric oxide also possess potent neuromodulatory actions in brain regions, such as prefrontal cortex (PFC), hippocampus (HIPP), and nucleus accumbens (NAC). In the present study, we evaluated the effect of acute Aβ injection on norepinephrine (NE) content before and after pharmacological manipulations of nitrergic system in above mentioned areas. Moreover, effects of the peptide on NOS activity were evaluated. Our data showed that 2 h after i.c.v. soluble Aβ administration, NE concentrations were significantly increased in the considered areas along with increased iNOS activity. Pre-treatment with NOS inhibitors, 7-Nitroindazole (7-NI), and N6-(1-iminoethyl)-L-lysine-dihydrochloride (L-NIL), reversed Aβ-induced changes. Ultimately, pharmacological block of interleukin1 (IL-1) receptors prevented NE increase in all brain regions. Taken together our findings suggest that NO and IL-1 are critically involved in regional noradrenergic alterations induced by soluble Aβ injection
Drugs of Abuse and Oxidative Stress in the Brain: From Animal Models to Human Evidence
Several studies have attempted to clarify molecular pathways leading to drug addiction. Increased reactive oxygen species production in the central nervous system has been recently proposed to play a pivotal role in the neuropathology induced by drug abuse. In this review, we summarize current knowledge on the involvement of oxidative stress in the development of neural dysfunctions induced by prolonged exposure to specific drugs of abuse: N-methyl-D-aspartate receptor antagonists (ketamine, phencyclidine and dizocilpine maleate), cocaine, heroin, marijuana, gammahydroxybutyrate, amphetamine and methamphetamine. Understanding the role of increased oxidative damage in the central nervous system following abuse of these compounds may provide original molecular perspectives leading to innovative therapeutic strategies
Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress
Stress is an inevitable part of human life and it is experienced even before birth. Stress to some extent could be considered normal and even necessary for the survival and the regular psychological development during childhood or adolescence. However, exposure to prolonged stress could become harmful and strongly impact mental health increasing the risk of developing psychiatric disorders. Recent studies have attempted to clarify how the human central nervous system (CNS) reacts to early life stress, focusing mainly on neurobiological modifications. Oxidative stress, defined as a disequilibrium between the oxidant generation and the antioxidant response, has been recently described as a candidate for most of the observed modifications. In this review, we will discuss how prolonged stressful events during childhood or adolescence (such as early maternal separation, parental divorce, physical violence, sexual or psychological abuses, or exposure to war events) can lead to increased oxidative stress in the CNS and enhance the risk to develop psychiatric diseases such as anxiety, depression, drug abuse or psychosis. Defining the sources of oxidative stress following exposure to early life stress might open new beneficial insights in therapeutic approaches to these mental disorders
Neurochemical differences in two rat strains exposed to social isolation rearing
Objective: Isolation rearing of rats provides a non-pharmacological method of inducing behavioural changes in rodents that resemble schizophrenia or depression. Nevertheless, results are variable within different strains. We focused on neurochemical changes in several in vivo and post-mortem brain regions of Wistar (W) and Lister Hooded (LH) rats following post-weaning social separation.
Methods: Experiments were conducted after 6–8 weeks of isolation. For post-mortem studies, prefrontal cortex (PFC), nucleus accumbens (NAC), hippocampus (Hipp) and striatum (St) were collected by tissue dissection. In vivo experiments were conducted by microdialysis in the PFC. Analyses of dopamine (DA), serotonin (5-HT) levels and relative turnover were performed by using high-performance liquid chromatography.
Results: We found significant strain-related differences in biogenic amine content. LH rats were characterised by markedly raised DA, along with its turnover reduction, in all the post-mortem brain regions examined as well as in microdialysis samples, while in W rats 5-HT tissue concentration was lower in PFC and St and higher in NAC and Hipp. Cortical extracellular 5-HT concentrations were increased in group housed and decreased in isolated W animals. Moreover, isolation increased DA concentrations in the PFC of LH rats, and decreased 5-HT in W rats in NAC and Hipp. Lately, 5-HT turnover was also affected by both strain and isolation conditions.
Conclusions: This study suggests that W and LH rats have markedly different neurochemical profiles in response to isolation, resulting in altered monoamine levels that vary according to brain area and rat strain. These findings highlight the importance of selecting an appropriate rat strain when considering isolation rearing to model symptoms of schizophrenia and/or depression
Neurochemical consequence of steroid abuse: Stanozolol-induced monoaminergic changes
An extensive literature has documented adverse effects on mental health in anabolic androgenic steroids (AAS) abusers. Depression seems a common adverse reaction in AAS abusers. Recently it has been reported that in a rat model of AAS abuse stanozolol induces behavioural and biochemical changes related to the pathophysiology of major depressive disorder. In the present study, we used the model of AAS abuse to examine possible changes in the monoaminergic system, a neurobiological substrate of depression, in different brain areas of stanozolol-treated animals. Wistar rats received repeated injections of stanozolol (5 mg/kg, s.c.), or vehicle (propylene glycol, 1 ml/kg) once daily for 4 weeks. Twenty-four hours after last injection, changes of dopamine (DA) and relative metabolite levels, homovanilic acid (HVA) and 3,4-dihydroxy phenylacetic acid (DOPAC), serotonin (5-HT) and its metabolite levels, 5-hydroxy indolacetic acid (5-HIAA), and noradrenaline (NA) amount were investigated in prefrontal cortex (PFC), nucleus accumbens (NAC), striatum (STR) and hippocampus (HIPP). The analysis of data showed that after chronic stanozolol, DA levels were increased in the HIPP and decreased in the PFC. No significant changes were observed in the STR or in the NAC. 5-HT and 5-HIAA levels were decreased in all brain areas investigated after stanozolol exposure; however, the 5-HIAA/5-HT ratio was not altered. Taken together, our data indicate that chronic use of stanozolol significantly affects brain monoamines leading to neurochemical modifications possibly involved in depression and stress-related states. (C) 2011 Elsevier Inc. All rights reserved
Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats
BACKGROUND: Social stress leads to oxidative stress in the central nervous system, contributing to the development of mental disorders. Loss of parvalbumin in interneurons is an important feature of these diseases. We studied the role of the superoxide-producing nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) in rats exposed to social isolation. METHODS: Male rats were kept for 7 weeks in group or in social isolation (n = 6-10 per group). Behavioral tests, immunohistochemistry, and analysis of NOX2 expression were performed at the end of social isolation. Apocynin was given in the drinking water (5 mg/kg/day). RESULTS: NOX2 was below detection level in the brains of control animals, whereas it was highly expressed in isolated rats, particularly in nucleus accumbens and prefrontal cortex. Indirect markers of oxidative stress (oxidized nucleic acid 8-hydroxy-2'-deoxyguanosine, redox-sensitive transcription factor c-fos, and hypoxia-inducible factor-1alpha) were increased after social isolation in brain areas with high NOX2 expression. An increase in immunoreactive microglia suggested that oxidative stress could be in part due to NOX2 activation in microglia. In response to social isolation, rats showed increased locomotor activity, decreased discrimination, signs of oxidative stress in neurons, and loss of parvalbumin-immunoreactivity. Treatment of isolated rats with the antioxidant/NOX inhibitor apocynin prevented the behavioral and histopathological alterations induced by social isolation. CONCLUSIONS: Our data suggest that NOX2-derived oxidative stress is involved in loss of parvalbumin immunoreactivity and development of behavioral alterations after social isolation. These results provide a molecular mechanism for the coupling between social stress and brain oxidative stress, as well as potential new therapeutic avenues
Neurochemical differences in two rat strains exposed to social isolation rearing
Objective: Isolation rearing of rats provides a non-pharmacological method of inducing behavioural changes in rodents that resemble schizophrenia or depression. Nevertheless, results are variable within different strains. We focused on neurochemical changes in several in vivo and post-mortem brain regions of Wistar (W) and Lister Hooded (LH) rats following post-weaning social separation.
Methods: Experiments were conducted after 6–8 weeks of isolation. For post-mortem studies, prefrontal cortex (PFC), nucleus accumbens (NAC), hippocampus (Hipp) and striatum (St) were collected by tissue dissection. In vivo experiments were conducted by microdialysis in the PFC. Analyses of dopamine (DA), serotonin (5-HT) levels and relative turnover were performed by using high-performance liquid chromatography.
Results: We found significant strain-related differences in biogenic amine content. LH rats were characterised by markedly raised DA, along with its turnover reduction, in all the post-mortem brain regions examined as well as in microdialysis samples, while in W rats 5-HT tissue concentration was lower in PFC and St and higher in NAC and Hipp. Cortical extracellular 5-HT concentrations were increased in group housed and decreased in isolated W animals. Moreover, isolation increased DA concentrations in the PFC of LH rats, and decreased 5-HT in W rats in NAC and Hipp. Lately, 5-HT turnover was also affected by both strain and isolation conditions.
Conclusions: This study suggests that W and LH rats have markedly different neurochemical profiles in response to isolation, resulting in altered monoamine levels that vary according to brain area and rat strain. These findings highlight the importance of selecting an appropriate rat strain when considering isolation rearing to model symptoms of schizophrenia and/or depression