77 research outputs found

    Oxygen stoichiometry, conductivity and gas sensing properties of BaSnO3

    Get PDF
    BaSnO3 powder loses a small amount of oxygen in air at high temperatures leading to significant changes in its electronic conductivity. At 1300 Β°C, it has the stoichiometry BaSnO2.9999. The oxygen deficiency can be preserved by quenching to room temperature but the oxygen loss is reversible and reoxidation commences above about 300 Β°C. The n-type conductivity of the quenched material at 300 Β°C, 1 Γ— 10βˆ’5 ohmβˆ’1 cmβˆ’1, is four orders of magnitude higher than that of the same fully oxidised, slow-cooled material. Oxygen-deficient BaSnO3 shows rapid sensitivity to an increase in oxygen partial pressure; it is also sensitive to moisture and then shows proton conductivity

    Effect of Zinc Oxide Modification by Indium Oxide on Microstructure, Adsorbed Surface Species, and Sensitivity to CO

    Get PDF
    Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1–7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work

    Specifics personalized approach in the analysis of medical information

    No full text
    In this article suggest some new approaches to solving the problems of medical data analysis and their personalization. To accomplish this was proposed to create a decision support system to the execution of sequence stages of analysis of patient's data. The main stages of development and design of decision support systems that enable to make decomposition of control process and describe the relationship between input and output control flows. Applying the theory of decision trees during construction of decision trees of decision support system is due to the formation of a sequence of questions asked by the doctor when searching an individual approach when choosing a treatment. Decision tree creates a hierarchical structure of rules. This approach allows you to present the logic of sequence issues by doctor in solving the medical problem history and it makes possible to simulate decision making process by physician when selecting treatment scheme. Search the target value of output of decision medical support system makes it possible to select top of graph system that is located with more probability on the best way to the target. Important step in addressing the process of personalizing treatment schemes is estimated function that is based on Bayes theorem. Weight of occurrence next event corresponds to the highest value of the posterior probability of occurrence of the next state, given the time-dependent input parameters. Proposed improved method of decision-making for personalization standard schemes by modifying the method of decision-making based on decision trees considering relationship between the input parameters and evaluation function and result of its works is a personalized therapeutic scheme of treatment. It analyzed the quantitative results of applying the proposed method and existing for determining personalized schemes

    Nanocrystalline LaCoO3 Modified by Ag Nanoparticles with Improved Sensitivity to H2S

    No full text
    Nanocrystalline LaCoO3 was synthesized by sol-gel method and functionalized by Agnanoparticles via impregnation [...

    Π’Π˜Π‘Π†Π  Π ΠΠ¦Π†ΠžΠΠΠ›Π¬ΠΠ˜Π₯ ΠŸΠΠ ΠΠœΠ•Π’Π Π†Π’ ΠΠžΠœΠ†ΠΠΠ›Π¬ΠΠžΠ“Πž Π Π•Π–Π˜ΠœΠ£ Π•Π›Π•ΠšΠ’Π ΠžΠ’ΠžΠ—Π†Π’

    No full text
    Purpose.The railways of Ukraine have been operated the locomotives, which are both morally and physically obsolete. Therefore, to ensure the competitiveness of rail transport it is necessary to update the locomotive fleet, and first of all the fleet of electric locomotives, because electrified railways provide the greater part of passenger and freight traffic. In this connection it is of special importance to determine the optimum parameters of the nominal mode of electric rolling stock. The purpose of the work is to examine the features of solution of these problems with respect to electric locomotives. Methodology. Assuming that the limit values of traction force are determined by the conditions of wheel-rail grip, then the power of the nominal mode can be represented as the product of rated speed, estimated friction coefficient, train weight and the coefficients that represent the ratio of the estimated (starting) value of traction force to value of traction force the nominal mode and the ratio of the mass of the locomotive to the train weight. Since the mass of the train is not a constant value, there is always a surplus power of the locomotive fleet required for the mastering of a predetermined volume of transportations. Reduced overcapacity of the locomotive fleet can be achieved by introduction of the locomotives of different power, designed for driving trains of different weight that will result in increased completeness of the power use but also in difficulty in selecting of locomotives for trains in operation. The paper shows the method of calculating the optimum values of power, speed and traction force of the nominal mode. It presents the mathematical model of the relationship of traction rate, excessive capacity and power of the traction unit. Findings.It is proved that the power of the traction unit, the total fleet power requirement and the excess of power in absolute units are proportional to the speed of the nominal mode. To reduce the total power of the fleet when selecting the optimum power of the traction unit it is necessary to take into consideration the speed of the nominal mode, defined by the condition of minimization of power consumption for traction, i.e. the smallest value that enables the implementation of the given running speed and the powerredundancy level required for operation. Originality. It consists in the development of a unified algorithm for determining the optimal parameter values of the nominal mode of passenger, freight and freight-passenger electric locomotives. Practical value. The authors determined the minimization costs during production, acquisition and maintenance of electric locomotives, whose nominal mode parameters are designed according to the above procedure.ЦСль. На ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³Π°Ρ… Π£ΠΊΡ€Π°ΠΈΠ½Ρ‹ ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΊΠ°ΠΊ ΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΈ физичСски устарСли. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для обСспСчСния конкурСнтоспособности ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ·ΠΎΠΊ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±Π½ΠΎΠ²Π»ΡΡ‚ΡŒ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠ°Ρ€ΠΊ ΠΈ, Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, ΠΏΠ°Ρ€ΠΊ элСктровозов, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ элСктрифицированныС ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Π΅ Π΄ΠΎΡ€ΠΎΠ³ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ пассаТирских ΠΈ Π³Ρ€ΡƒΠ·ΠΎΠ²Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ·ΠΎΠΊ. Π’ связи с этим ΠΎΡΠΎΠ±ΡƒΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°ΡŽΡ‚ Π·Π°Π΄Π°Ρ‡ΠΈ опрСдСлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² номинального Ρ€Π΅ΠΆΠΈΠΌΠ° элСктроподвиТного состава. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся рассмотрСниС особСнностСй Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ элСктровозов. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. Если Π΄ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ значСния силы тяги элСктровоза ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΏΠΎ условиям сцСплСния колСса с Ρ€Π΅Π»ΡŒΡΠΎΠΌ, Ρ‚ΠΎ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ номинального Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ номинальной скорости двиТСния, расчСтного коэффициСнта сцСплСния, массы состава ΠΏΠΎΠ΅Π·Π΄Π° ΠΈ коэффициСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ расчСтной (пусковой) силы тяги ΠΊ силС тяги номинального Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ массы Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Π° ΠΊ массС состава. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ масса состава являСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π½Π΅ постоянной, Ρ‚ΠΎ Π² Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… условиях всСгда сущСствуСт избыточная ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€ΠΊΠ°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для освоСния Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ объСма ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ·ΠΎΠΊ. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΉ мощности ΠΏΠ°Ρ€ΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π° счСт ввСдСния Π² ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†ΠΈΡŽ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²ΠΎΠ² Ρ€Π°Π·Π½ΠΎΠΉ мощности, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для воТдСния ΠΏΠΎΠ΅Π·Π΄ΠΎΠ² Ρ€Π°Π·Π½ΠΎΠΉ массы, ΠΏΡ€ΠΈ этом возрастаСт ΠΏΠΎΠ»Π½ΠΎΡ‚Π° использования мощности, Π½ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ трудности ΠΏΠΎΠ΄Π±ΠΎΡ€Π° Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²ΠΎΠ² для ΠΏΠΎΠ΅Π·Π΄ΠΎΠ² Π² эксплуатации. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ мощности, скорости ΠΈ силы тяги номинального Ρ€Π΅ΠΆΠΈΠΌΠ°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ матСматичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ взаимосвязи кратности тяги, ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΉ мощности ΠΈ мощности тягового модуля. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ тягового модуля, суммарная потрСбная ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€ΠΊΠ° ΠΈ излишСк этой мощности Π² Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ скорости номинального Ρ€Π΅ΠΆΠΈΠΌΠ°. Для сниТСния суммарной мощности ΠΏΠ°Ρ€ΠΊΠ° ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ мощности номинального Ρ€Π΅ΠΆΠΈΠΌΠ° тягового модуля Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π² расчСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ номинального Ρ€Π΅ΠΆΠΈΠΌΠ°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΡƒΡŽ ΠΈΠ· условий ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ расхода элСктроэнСргии Π½Π° тягу, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ обСспСчиваСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ…ΠΎΠ΄ΠΎΠ²ΠΎΠΉ скорости двиТСния ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для условий эксплуатации уровня рСзСрвирования мощности. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π°. Π£Π½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ состоит Π² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° опрСдСлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² номинального Ρ€Π΅ΠΆΠΈΠΌΠ° пассаТирских, Π³Ρ€ΡƒΠ·ΠΎΠ²Ρ‹Ρ… ΠΈ грузопассаТирских элСктровозов. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ. Авторами ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° минимизация расходов ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ, ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠΈ ΠΈ содСрТании элСктровозов, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ номинального Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… рассчитаны согласно ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅.ΠœΠ΅Ρ‚Π°. На залізницях Π£ΠΊΡ€Π°Ρ—Π½ΠΈ Π΅ΠΊΡΠΏΠ»ΡƒΠ°Ρ‚ΡƒΡŽΡ‚ΡŒΡΡ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²ΠΈ, які як ΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ Ρ– Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΎ застарілі. Π’ΠΎΠΌΡƒ для забСзпСчСння конкурСнтоспромоТності Π·Π°Π»Ρ–Π·Π½ΠΈΡ‡Π½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Π²Π΅Π·Π΅Π½ΡŒ Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ ΠΎΠ½ΠΎΠ²Π»ΡŽΠ²Π°Ρ‚ΠΈ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΏΠ°Ρ€ΠΊ Ρ–, Π² ΠΏΠ΅Ρ€ΡˆΡƒ Ρ‡Π΅Ρ€Π³Ρƒ, ΠΏΠ°Ρ€ΠΊ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ²ΠΎΠ·Ρ–Π², ΠΎΡΠΊΡ–Π»ΡŒΠΊΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½Ρ– Π·Π°Π»Ρ–Π·Π½ΠΈΡ†Ρ– Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½Ρƒ частину ΠΏΠ°ΡΠ°ΠΆΠΈΡ€ΡΡŒΠΊΠΈΡ… Ρ‚Π° Π²Π°Π½Ρ‚Π°ΠΆΠ½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Π²Π΅Π·Π΅Π½ΡŒ. Π’ зв’язку Π· Ρ†ΠΈΠΌ особливу Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ Π½Π°Π±ΡƒΠ²Π°ΡŽΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρ– визначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ€ΡƒΡ…ΠΎΠΌΠΎΠ³ΠΎ складу. ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Ρ” розгляд особливостСй розв’язання Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ… Π·Π°Π΄Π°Ρ‡ стосовно Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ²ΠΎΠ·Ρ–Π². ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. Π―ΠΊΡ‰ΠΎ допустити, Ρ‰ΠΎ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ– значСння сили тяги Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ²ΠΎΠ·Π° Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ Π·Π° ΡƒΠΌΠΎΠ²Π°ΠΌΠΈ зчСплСння колСса Π· Ρ€Π΅ΠΉΠΊΠΎΡŽ, Ρ‚ΠΎ ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΠΌΠΎΠΆΠ½Π° прСдставити як Π΄ΠΎΠ±ΡƒΡ‚ΠΎΠΊ Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΡ— ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Ρ€ΡƒΡ…Ρƒ, Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° зчСплСння, маси состава ΠΏΠΎΡ—Π·Π΄Π° Ρ‚Π° ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π², які ΡΠ²Π»ΡΡŽΡ‚ΡŒ собою Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— (пускової) сили тяги Π΄ΠΎ сили тяги Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Ρ‚Π° Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ маси Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Π° Π΄ΠΎ маси состава. ΠžΡΠΊΡ–Π»ΡŒΠΊΠΈ маса состава Ρ” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΡŽ Π½Π΅ ΠΏΠΎΡΡ‚Ρ–ΠΉΠ½ΠΎΡŽ, Ρ‚ΠΎ Ρƒ Ρ€Π΅Π°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… Π·Π°Π²ΠΆΠ΄ΠΈ існує надлишкова ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€ΠΊΡƒ, Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎΠ³ΠΎ для освоєння Π·Π°Π΄Π°Π½ΠΎΠ³ΠΎ об’єму ΠΏΠ΅Ρ€Π΅Π²Π΅Π·Π΅Π½ΡŒ. ЗниТСння Π½Π°Π΄Π»ΠΈΡˆΠΊΠΎΠ²ΠΎΡ— потуТності ΠΏΠ°Ρ€ΠΊΡƒ ΠΌΠΎΠΆΠ½Π° ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ ввСдСння Π² Π΅ΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†Ρ–ΡŽ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— потуТності, ΠΏΡ€ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡ… для водіння ΠΏΠΎΡ—Π·Π΄Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— маси, ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ зростає ΠΏΠΎΠ²Π½ΠΎΡ‚Π° використання потуТності, Π°Π»Π΅ Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡ‰Ρ– ΠΏΡ–Π΄Π±ΠΎΡ€Ρƒ Π»ΠΎΠΊΠΎΠΌΠΎΡ‚ΠΈΠ²Ρ–Π² для ΠΏΠΎΡ—Π·Π΄Ρ–Π² Ρƒ Сксплуатації. Π’ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π½Π°Π²Π΅Π΄Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ потуТності, ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Ρ‚Π° сили тяги Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ– взаємозв’язку кратності тяги, Π½Π°Π΄Π»ΠΈΡˆΠΊΠΎΠ²ΠΎΡ— потуТності ΠΉ потуТності тягового модуля. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ тягового модуля, сумарна ΠΏΠΎΡ‚Ρ€Ρ–Π±Π½Π° ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ ΠΏΠ°Ρ€ΠΊΡƒ ΠΉ надлишок Ρ†Ρ–Ρ”Ρ— потуТності Π² Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΈΡ… одиницях ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†Ρ–ΠΉΠ½Ρ– ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ. Для зниТСння сумарної потуТності ΠΏΠ°Ρ€ΠΊΡƒ ΠΏΡ€ΠΈ Π²ΠΈΠ±ΠΎΡ€Ρ– ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— потуТності Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ тягового модуля слід прийняти Π² Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ, Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρƒ Π·Π° ΡƒΠΌΠΎΠ²ΠΈ ΠΌΡ–Π½Ρ–ΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π²ΠΈΡ‚Ρ€Π°Ρ‚ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΅Π½Π΅Ρ€Π³Ρ–Ρ— Π½Π° тягу, Ρ‚ΠΎΠ±Ρ‚ΠΎ наймСншС значСння, Ρ‰ΠΎ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π·Π°Π΄Π°Π½ΠΎΡ— Ρ…ΠΎΠ΄ΠΎΠ²ΠΎΡ— ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Ρ€ΡƒΡ…Ρƒ ΠΉ Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎΠ³ΠΎ для ΡƒΠΌΠΎΠ² Сксплуатації рівня рСзСрвування потуТності. Наукова Π½ΠΎΠ²ΠΈΠ·Π½Π°. Π£Π½Ρ–ΠΊΠ°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ полягає Ρƒ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– ΡƒΠ½Ρ–Ρ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ визначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ ΠΏΠ°ΡΠ°ΠΆΠΈΡ€ΡΡŒΠΊΠΈΡ…, Π²Π°Π½Ρ‚Π°ΠΆΠ½ΠΈΡ… Ρ‚Π° Π²Π°Π½Ρ‚Π°ΠΆΠΎΠΏΠ°ΡΠ°ΠΆΠΈΡ€ΡΡŒΠΊΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ²ΠΎΠ·Ρ–Π². ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° Π·Π½Π°Ρ‡ΠΈΠΌΡ–ΡΡ‚ΡŒ. Авторами Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π° мінімізація Π²ΠΈΡ‚Ρ€Π°Ρ‚ ΠΏΡ€ΠΈ Π²ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ–, ΠΏΡ€ΠΈΠ΄Π±Π°Π½Π½Ρ– Ρ‚Π° ΡƒΡ‚Ρ€ΠΈΠΌΠ°Π½Π½Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ²ΠΎΠ·Ρ–Π², ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Π½ΠΎΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ яких Ρ€ΠΎΠ·Ρ€Π°Ρ…ΠΎΠ²Π°Π½Ρ– Π·Π³Ρ–Π΄Π½ΠΎ Π½Π°Π²Π΅Π΄Π΅Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ

    SELECTION OF RATIONAL PARAMETERS OF THE NOMINAL MODE ELECTRIC TRAINS WITH ASYNCHRONOUS TRACTION DRIVE

    No full text
    Purpose. Parameters of the nominal mode are related to the most important performance indicators of traction means, therefore, the problems of choosing their optimal values always inevitably arise when forming technical requirements for a new rolling stock. The paper describes the features of solving the above-mentioned problems for electric trains with an asynchronous traction drive in the case of two-zone and three-zone frequency control of power. Methodology. Power of nominal mode of the rolling stock should be chosen in such a way that it would be possible to realize a predetermined travel time along in the section or the movement speed. On that basis, and also taking into account the fact that the important operational characteristics of electric trains include the acceleration value during the start-up and acceleration at the design speed, we will formulate the problem of determining the nominal power. In the task for a given range of traction, it is necessary to find such a value of the nominal mode power and the corresponding force value to ensure the ability to carry out transportations with the given level of average speed with minimal energy consumption for traction. At the same time, it is necessary to fulfill the following conditions: a) the speed of the electric train on the section does not exceed the established limits; b) it is possible to realize the given values of accelerations. A more detailed consideration of the problem shows that in real conditions, when the starting acceleration and the mass of the train are given, the problem of determining electric train power is practically reduced to determining the optimal value of the nominal mode speed. Findings. The task of choosing the optimal values of the nominal mode speed is solved by determining the electric power consumption with the variation of the possible values of starting speed. Therefore, only those values that ensure the implementation of the given starting and residual accelerations should be taken into account. The work shows that the traction force value increases with the design speed increase and other equal conditions, if the starting speed is increased. Originality. Authors developed the methodology for determining the optimal values of the nominal mode parameters of electric trains with an asynchronous traction drive, with two-zone and three-zone frequency power regulation. Practical value. The above mentioned methodology can be the basis when forming technical requirements for new rolling stock for Ukraine’s railways

    Synergistic Effect of Surface Acidity and PtOx Catalyst on the Sensitivity of Nanosized Metal–Oxide Semiconductors to Benzene

    No full text
    Benzene is a potentially carcinogenic volatile organic compound (VOC) and its vapor must be strictly monitored in air. Metal–oxide semiconductors (MOS) functionalized by catalytic noble metals are promising materials for sensing VOC, but basic understanding of the relationships of materials composition and sensors behavior should be improved. In this work, the sensitivity to benzene was comparatively studied for nanocrystalline n-type MOS (ZnO, In2O3, SnO2, TiO2, and WO3) in pristine form and modified by catalytic PtOx nanoparticles. Active sites of materials were analyzed by X-ray photoelectron spectroscopy (XPS) and temperature-programmed techniques using probe molecules. The sensing mechanism was studied by in situ diffuse-reflectance infrared (DRIFT) spectroscopy. Distinct trends were observed in the sensitivity to benzene for pristine MOS and nanocomposites MOS/PtOx. The higher sensitivity of pristine SnO2, TiO2, and WO3 was observed. This was attributed to higher total concentrations of oxidation sites and acid sites favoring target molecules’ adsorption and redox conversion at the surface of MOS. The sensitivity of PtOx−modified sensors increased with the surface acidity of MOS and were superior for WO3/PtOx. It was deduced that this was due to stabilization of reduced Pt sites which catalyze deep oxidation of benzene molecules to carbonyl species

    BUILDING THE MICRO-LEVEL COMPOSITE MATERIALS STRUCTURE MODELS IN THE PROBLEMS OF THEIR OPTIMAL DESIGN

    No full text
    Набули подальшого Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ основні ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ ΠΌΡ–ΠΊΡ€ΠΎΡ€Ρ–Π²Π½Π΅Π²ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉΠ½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π², ΡˆΠ»ΡΡ…ΠΎΠΌ Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ–Π² Ρ‚Π° Ρ—Ρ… Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠΌΡƒ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡Π΅Π½Π½Ρ–, Π· допомогою Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ високопродуктивних ΠΏΠ°Ρ€Π°Π»Π΅Π»ΡŒΠ½ΠΈΡ… Ρ‚Π° Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½ΠΈΡ… ΠΎΠ±Ρ‡ΠΈΡΠ»Π΅Π½ΡŒ. Основною Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŽ Ρ” вилучСння Π΅Ρ‚Π°ΠΏΡƒ дискрСтизації структури ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉΠ½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π², завдяки Ρ—Ρ— Π±Π΅Π·ΠΏΠΎΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠΌΡƒ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚Π°Π½Π½ΡŽ як сітки скінчСнних Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Ρ‰ΠΎ Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ спростити обчислСння Ρ‚Π° Π·Π½Π°Ρ‡Π½ΠΎ Π·ΠΌΠ΅Π½ΡˆΠΈΡ‚ΠΈ Ρ—Ρ… ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ. НавСдСно ΠΏΡ€ΠΈΠΊΠ»Π°Π΄ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² модСлювання Π½Π° ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… ΠΊΠΎΠΌΠΏ'ΡŽΡ‚Π΅Ρ€Π°Ρ… пСрСсічної ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π°Ρ†Ρ–Ρ—.ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ дальнСйшСС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ основныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ построСния ΠΌΠΈΠΊΡ€ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², ΠΏΡƒΡ‚Π΅ΠΌ Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΈ ΠΈΡ… Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ распрСдСлСнных вычислСний. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ΠΌ являСтся ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ этапа дискрСтизации структуры ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², благодаря Π΅Π΅ нСпосрСдствСнному использованию Π² качСствС сСтки ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов, Ρ‡Ρ‚ΠΎ позволяСт ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ вычислСния ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ ΠΈΡ… количСство. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² модСлирования Π½Π° ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π°Ρ… заурядной ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π°Ρ†ΠΈΠΈ.Further development is appropriate to the main microlevel composite materials models building methods by their algorithms decomposition and implementation in software, which uses high-performance technology of parallel and distributed computing. The main difference is the exclusion of the composite materials structure discretization phase, due to its direct usage as a finite element mesh, which allows simplifying the calculation and significantly reduces their number. The examples of simulation on ordinary personal computers configuration are shown

    THE ANALYSIS OF ANALYTICAL FUNCTIONS FOR APPROXIMATIVE DO-ALL MAGNETIC CHARACTERISTIC OF DIRECT – CURRENT AND UNDULATED – CURRENT TRACTION MOTORS

    No full text
    A number of functions for approximating the universal magnetic curve and its derivatives, their accuracy and conformity to the requirements put forward by the authors have been studied
    • …
    corecore