47 research outputs found

    Developing and investigating a nanovibration intervention for the prevention/reversal of bone loss following spinal cord injury

    Get PDF
    Osteoporosis disrupts the fine-tuned balance between bone formation and resorption, leading to reductions in bone quantity and quality and ultimately increasing fracture risk. Prevention and treatment of osteoporotic fractures is essential for reductions in mortality, morbidity, and the economic burden, particularly considering the aging global population. Extreme bone loss that mimics time-accelerated osteoporosis develops in the paralyzed limbs following complete spinal cord injury (SCI). In vitro nanoscale vibration (1 kHz, 30 or 90 nm amplitude) has been shown to drive differentiation of mesenchymal stem cells toward osteoblast-like phenotypes, enhancing osteogenesis and inhibiting osteoclastogenesis simultaneously. Here, we develop and characterize a wearable device designed to deliver and monitor continuous nanoamplitude vibration to the hindlimb long bones of rats with complete SCI. We investigate whether a clinically feasible dose of nanovibration (two 2 h/day, 5 days/week for 6 weeks) is effective at reversing the established SCI-induced osteoporosis. Laser interferometry and finite element analysis confirmed transmission of nanovibration into the bone, and microcomputed tomography and serum bone formation and resorption markers assessed effectiveness. The intervention did not reverse SCI-induced osteoporosis. However, serum analysis indicated an elevated concentration of the bone formation marker procollagen type 1 N-terminal propeptide (P1NP) in rats receiving 40 nm amplitude nanovibration, suggesting increased synthesis of type 1 collagen, the major organic component of bone. Therefore, enhanced doses of nanovibrational stimulus may yet prove beneficial in attenuating/reversing osteoporosis, particularly in less severe forms of osteoporosis

    Forensic microbiology reveals that Neisseria animaloris infections in harbour porpoises follow traumatic injuries by grey seals

    Get PDF
    Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically inflamed bite wounds on pectoral fins and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the finding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment

    Get PDF
    Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Dead useful; methods for quantifying baseline variability in stranding rates to improve the ecological value of the strandings record as a monitoring tool

    No full text
    The ecological value of the stranding record is often challenged due to the complexity in quantifying the biases associated with multiple components of the stranding process. There are biological, physical and social aspects that complicate the interpretation of stranding data particularly at a population level. We show how examination of baseline variability in the historical stranding record can provide useful insights into temporal trends and facilitate the detection of unusual variability in stranding rates. Seasonal variability was examined using harbour porpoise strandings between 1992 and 2014 on the east coast of Scotland. Generalized Additive Mixed modelling revealed a strong seasonal pattern, with numbers increasing from February towards a peak in April. Profiling seasonality this way facilitates detection of unusual variations in stranding frequencies and permits for any change in the incidence of strandings to be quantified by evaluation of the normalized model residuals. Consequently, this model can be used to identify unusual mortality events, and quantify the degree to which they deviate from baseline. With this study we demonstrate that a described baseline in strandings allows the detection of abnormalities at an early stage and can be used as a regional framework of reference for monitoring. This methodology provides means to quantify and partition the variability associated with strandings data and is a useful first step towards improving the stranding record as a management resource

    Dead useful; methods for quantifying baseline variability in stranding rates to improve the ecological value of the strandings record as a monitoring tool

    No full text
    The ecological value of the stranding record is often challenged due to the complexity in quantifying the biases associated with multiple components of the stranding process. There are biological, physical and social aspects that complicate the interpretation of stranding data particularly at a population level. We show how examination of baseline variability in the historical stranding record can provide useful insights into temporal trends and facilitate the detection of unusual variability in stranding rates. Seasonal variability was examined using harbour porpoise strandings between 1992 and 2014 on the east coast of Scotland. Generalized Additive Mixed modelling revealed a strong seasonal pattern, with numbers increasing from February towards a peak in April. Profiling seasonality this way facilitates detection of unusual variations in stranding frequencies and permits for any change in the incidence of strandings to be quantified by evaluation of the normalized model residuals. Consequently, this model can be used to identify unusual mortality events, and quantify the degree to which they deviate from baseline. With this study we demonstrate that a described baseline in strandings allows the detection of abnormalities at an early stage and can be used as a regional framework of reference for monitoring. This methodology provides means to quantify and partition the variability associated with strandings data and is a useful first step towards improving the stranding record as a management resource

    Non-canonical functions of SNAIL drive context-specific cancer progression

    No full text
    Abstract SNAIL is a key transcriptional regulator in embryonic development and cancer. Its effects in physiology and disease are believed to be linked to its role as a master regulator of epithelial-to-mesenchymal transition (EMT). Here, we report EMT-independent oncogenic SNAIL functions in cancer. Using genetic models, we systematically interrogated SNAIL effects in various oncogenic backgrounds and tissue types. SNAIL-related phenotypes displayed remarkable tissue- and genetic context-dependencies, ranging from protective effects as observed in KRAS- or WNT-driven intestinal cancers, to dramatic acceleration of tumorigenesis, as shown in KRAS-induced pancreatic cancer. Unexpectedly, SNAIL-driven oncogenesis was not associated with E-cadherin downregulation or induction of an overt EMT program. Instead, we show that SNAIL induces bypass of senescence and cell cycle progression through p16 INK4A -independent inactivation of the Retinoblastoma (RB)-restriction checkpoint. Collectively, our work identifies non-canonical EMT-independent functions of SNAIL and unravel its complex context-dependent role in cancer

    Rapid genotyping of hemochromatosis gene mutations on the LightCycler with fluorescent hybridization probes

    Get PDF
    Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically inflamed bite wounds on pectoral fins and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the finding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans.</p
    corecore