40 research outputs found

    Actual and mental motor preparation and execution: a spatiotemporal ERP study

    Get PDF
    Studies evaluating the role of the executive motor system in motor imagery came to a general agreement in favour of the activation of the primary motor area (M1) during imagery, although in reduced proportion as compared to motor execution. It is still unclear whether this difference occurs within the preparation period or the execution period of the movement, or both. In the present study, EEG was used to investigate separately the preparation and the execution periods of overt and covert movements in adults. We designed a paradigm that randomly mixed actual and kinaesthetic imagined trials of an externally paced sequence of finger key presses. Sixty channel event-related potentials were recorded to capture the cerebral activations underlying the preparation for motor execution and motor imagery, as well as cerebral activations implied in motor execution and motor imagery. Classical waveform analysis was combined with data-driven spatiotemporal segmentation analysis. In addition, a LAURA source localization algorithm was applied to functionally define brain related motor areas. Our results showed first that the difference between actual and mental motor acts takes place at the late stage of the preparation period and consists of a quantitative modulation of the activity of common structures in M1. Second, they showed that primary motor structures are involved to the same extent in the actual or imagined execution of a motor act. These findings reinforce and refine the functional equivalence hypothesis between actual and imagined motor act

    Steady-state evoked potentials distinguish brain mechanisms of self-paced versus synchronization finger tapping

    Get PDF
    Sensorimotor synchronization (SMS) requires aligning motor actions to external events and represents a core part of both musical and dance performances. In the current study, to isolate the brain mechanisms involved in synchronizing finger tapping with a musical beat, we compared SMS to pure self-paced finger tapping and listen- only conditions at different tempi. We analyzed EEG data using frequency domain steady-state evoked potentials (SSEPs) to identify sustained electrophysiological brain activity during repetitive tasks. Behavioral results revealed different timing modes between SMS and self-paced finger tapping, associated with distinct scalp topographies, thus suggesting different underlying brain sources. After subtraction of the listen-only brain activity, SMS was compared to self-paced finger tapping. Resulting source estimations showed stronger activation of the left inferior frontal gyrus during SMS, and stronger activation of the bilateral inferior parietal lobule during self-paced finger tapping. These results point to the left inferior frontal gyrus as a pivot for perception–action coupling. We discuss our findings in the context of the ongoing debate about SSEPs interpretation given the variety of brain events contributing to SSEPs and similar EEG frequency responses

    Age-related changes in the bimanual advantage and in brain oscillatory activity during tapping movements suggest a decline in processing sensory reafference

    Get PDF
    Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n=29) and old (n=27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping conditionand age group on low beta band (14-20Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a ‘kinesthetic' mechanism for UM and a ‘visual imagery' mechanism for BM tapping movement

    Age-related differences on event-related potentials and brain rhythm oscillations during working memory activation

    Get PDF
    Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PNwm) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PNwm component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PNwm area increased with higher memory loads (3- and 2-back>0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger person

    Contribution of electro-cortical imaging to neuroscience of aging and cognitive decline

    No full text
    The present thesis explores the electroencephalographic (EEG) patterns associated with attention and working memory functions in normal aging and in patients with moderate cognitive decline possibly precursor of Alzheimer’s disease. Across five studies published between 2009 and 2015, we examine the surface EEG fluctuations generated by visual perception and cognitive processing in the form of 1) event-related potentials (ERPs), reflecting postsynaptic potentials of cortical neural populations, and 2) patterns of brain oscillations between 4 and 30 Hz, including theta (4-7.5 Hz), alpha (8-13 Hz) and beta (14-30 Hz) frequency bands, corresponding to rhythmic synchronizations of neuronal discharges in specific cell assemblies. Overall, these studies evidence various specific functional perturbations associated with cognitive activation in older adults and patients with cognitive deficits, demonstrating the capacity of electrophysiological indices to provide sensitive measures of brain function in normal aging and cognitive decline
    corecore