30 research outputs found

    Plusieurs niveaux de contrôle sont mis en jeu lors de flétrissement bactérien chez la légumineuse modèle Medicago truncatula

    Get PDF
    Nous présentons l étude de l interaction entre la bactérie pathogène racinaire Ralstonia solanacearum et la légumineuse modèle Medicago truncatula. Un pathosystème avec les lignées A17 et F83005.5, respectivement sensible et résistante à la souche GMI1000, a été mis en place avec une procédure d inoculation sur racines intactes. Ce dispositif expérimental nous a permis de suivre le processus infectieux, de la pénétration de la bactérie par l extrémité racinaire au développement des symptômes foliaires. L analyse des étapes précoces de l interaction a permis de décrire l apparition de symptômes racinaires qui se mettent en place rapidement après l infection, que les lignées soient résistantes ou sensibles à la bactérie. Un arrêt de croissance de la racine s'observe dès 24 heures post-inoculation, ainsi qu une mortalité de l épiderme de l extrémité racinaire. Ces phénotypes sont notés suite à des inoculations avec de faibles concentrations bactériennes, et ce sur plusieurs espèces hôtes ou non-hôtes testées. La mise en place des symptômes racinaires est dépendante de l appareil de sécrétion de type III. Un crible de mutants d effecteurs de type III de la souche GMI1000, basé sur l apparition des symptômes racinaires, a permis de montrer que des pools différents d effecteurs interviennent chez A17 et F83005.5. Chez la lignée sensible A17, deux effecteurs sont principalement impliqués, Gala7 et AvrA. L étude de la colonisation de cette lignée a montré que le mutant gala7 ne pénètre pas la plante et n induit pas de symptômes de flétrissement. Le mutant avrA s est révélé capable d induire la maladie chez la lignée A17 mais de manière nettement réduite par rapport à la souche sauvage. L analyse des extrémités racinaires des lignées sensible et résistante infectées par la souche GMI1000 a révélé qu au niveau des parois de l endoderme, la présence de lignine est induite de manière plus précoce chez la lignée résistante. Des phénomènes de division cellulaire ont été identifiés autour du cylindre central et semblent également liés à une restriction de la propagation bactérienne. Au niveau du contenu cellulaire, une autofluorescence et une production de ROS semblent liés à une phase nécrotrophe de la bactérie lors de sa propagation dans la zone corticale de l extrémité racinaire. L étude de la colonisation bactérienne en s affranchissant de l étape de pénétration a révélé que des mécanismes de résistances peuvent intervenir au niveau de collet chez la lignée F83005.5 et lors de la colonisation racinaire des vaisseaux conducteurs suite à une inoculation avec le mutant gala7ManquantTOULOUSE-ENSAT-Documentation (315552324) / SudocSudocFranceF

    Wild Helianthus species: A reservoir of resistance genes for sustainable pyramidal resistance to broomrape in sunflower

    Get PDF
    Orobanche cumana Wall., sunflower broomrape, is one of the major pests for the sunflower crop. Breeding for resistant varieties in sunflower has been the most efficient method to control this parasitic weed. However, more virulent broomrape populations continuously emerge by overcoming genetic resistance. It is thus essential to identify new broomrape resistances acting at various stages of the interaction and combine them to improve resistance durability. In this study, 71 wild sunflowers and wild relatives accessions from 16 Helianthus species were screened in pots for their resistance to broomrape at the late emergence stage. From this initial screen, 18 accessions from 9 species showing resistance, were phenotyped at early stages of the interaction: the induction of broomrape seed germination by sunflower root exudates, the attachment to the host root and the development of tubercles in rhizotron assays. We showed that wild Helianthus accessions are an important source of resistance to the most virulent broomrape races, affecting various stages of the interaction: the inability to induce broomrape seed germination, the development of incompatible attachments or necrotic tubercles, and the arrest of emerged structure growth. Cytological studies of incompatible attachments showed that several cellular mechanisms were shared among resistant Helianthus species.This study was performed in the frame of a 3-year project (ResODiv), funded by “Promosol” (the association of French Sunflower and Rapeseed Breeders for promoting these crops).Peer reviewe

    Cytokinins in Symbiotic Nodulation: When, Where, What For?

    No full text
    Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review

    Characterization of the Interaction Between the Bacterial Wilt Pathogen Ralstonia solanacearum and the Model Legume Plant Medicago truncatula

    Get PDF
    The soilborne pathogen Ralstonia solanacearum is the causal agent of bacterial wilt and attacks more than 200 plant species, including some legumes and the model legume plant Medicago truncatula. We have demonstrated that M. truncatula accessions Jemalong A17 and F83005.5 are sus- ceptible to R. solanacearum and, by screening 28 R. solana- cearum strains on the two M. truncatula lines, differential interactions were identified. R. solanacearum GMI1000 infected Jemalong A17 line, and disease symptoms were dependent upon functional hrp genes. An in vitro root in- oculation method was employed to demonstrate that R. solanacearum colonized M. truncatula via the xylem and intercellular spaces. R. solanacearum multiplication was restricted by a factor greater than 1 Ă— 105 in the resistant line F83005.5 compared with susceptible Jemalong A17. Genetic analysis of recombinant inbred lines from a cross between Jemalong A17 and F83005.5 revealed the presence of major quantitative trait loci for bacterial wilt resistance located on chromosome 5. The results indicate that the root pathosystem for M. truncatula will provide useful traits for molecular analyses of disease and resistance in this model plant species

    The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction.

    No full text
    • A plant-microbe dual biological system was set up involving the model legume Medicago truncatula and two bacteria, the soil-borne root pathogen Ralstonia solanacearum and the beneficial symbiont Sinorhizobium meliloti. • Comparison of transcriptomes under symbiotic and pathogenic conditions highlighted the transcription factor MtEFD (Ethylene response Factor required for nodule Differentiation) as being upregulated in both interactions, together with a set of cytokinin-related transcripts involved in metabolism, signaling and response. MtRR4 (Response Regulator), a cytokinin primary response gene negatively regulating cytokinin signaling and known as a target of MtEFD in nodulation processes, was retrieved in this set of transcripts. • Refined studies of MtEFD and MtRR4 expression during M. truncatula and R. solanacearum interaction indicated differential kinetics of induction and requirement of central regulators of bacterial pathogenicity, HrpG and HrpB. Similar to MtRR4, MtEFD upregulation during the pathogenic interaction was dependent on cytokinin perception mediated by the MtCRE1 (Cytokinin REsponse 1) receptor. • The use of M. truncatula efd-1 and cre1-1 mutants evidenced MtEFD and cytokinin perception as positive factors for bacterial wilt development. These factors therefore play an important role in both root nodulation and root disease development

    MtNF-YA1, a central transcriptional regulator of symbiotic nodule development, is also a determinant of Medicago truncatula susceptibility toward a root pathogen

    Get PDF
    Plant NF-Y transcription factors control a wide array of biological functions enabling appropriate reproductive and developmental processes as well as adaptation to various abiotic and biotic environments. In Medicago truncatula, MtNF-YA1 was previously identified as a key determinant for nodule development and establishment of rhizobial symbiosis. Here, we highlight a new role for this protein in compatibility to Aphanomyces euteiches, a root pathogenic oomycete. The Mtnf-ya1-1 mutant plants showed better survival rate, reduced symptoms, and increased development of their root apparatus as compared to their wild-type (VVT) background A17. MtNF-YA-1 was specifically up-regulated by A. euteiches in F83005.5, a highly susceptible natural accession of M. truncatula while transcript level remained stable in A17, which is partially resistant. The role of MtNF-YA1 in F83005.5 susceptibility was further documented by reducing MtNF-YA1 expression either by overexpression of the miR169q, a microRNA targeting MtNF-YA1, or by RNAi approaches leading to a strong enhancement in the resistance of this susceptible line. Comparative analysis of the transcriptome of VVT and Mtnf-ya1-1 led to the identification of 1509 differentially expressed genes. Among those, almost 36 defense-related genes were constitutively expressed in Mtnf-ya1-1, while 20 genes linked to hormonal pathways were repressed. In summary, we revealed an unexpected dual role for this symbiotic transcription factor as a key player in the compatibility mechanisms to a pathogen

    Autoregulation dependent and independent mechanisms are responsible for the systemic control of nodule formation by the plant N demand

    No full text
    Abstract In legumes interacting with rhizobia the formation of symbiotic organs responsible for the acquisition of atmospheric nitrogen is depending of the plant nitrogen (N) demand. We discriminated between local and systemic impact of nitrogen on nodule formation using Medicago truncatula plants cultivated in split-root systems. We obtained evidence of the control of nodule formation by whole plant systemic N-satisfaction signaling but obtained little evidence of a local control by mineral nitrogen. We characterized the impact of systemic N signaling on the root transcriptome reprogramming associated to nodule formation. We identified, large genes clusters displaying common expression profiles in response to systemic N signaling enriched in particular fonctions required during these biological processes. We found evidence of a strong effect of SUNN in the control by systemic N signaling of many genes involved in the early interaction with rhizobium as well as organogenesis supporting a role of autoregulation pathway in systemic N signaling. However, we also found evidence that major SUNN independent systemic N signaling controls were maintained in the mutant. This study shed light on the unexpected high complexity of the control of nodule formation by systemic N signaling, that probably involves multiple pathways

    Systemic control of nodule formation by plant nitrogen demand requires autoregulation-dependent and independent mechanisms

    No full text
    International audienceIn legumes interacting with rhizobia, the formation of symbiotic organs involved in the acquisition of atmospheric nitrogen gas (N2) is dependent on the plant nitrogen (N) demand. We used Medicago truncatula plants cultivated in split-root systems to discriminate between responses to local and systemic N signaling. We evidenced a strong control of nodule formation by systemic N signaling but obtained no clear evidence of a local control by mineral nitrogen. Systemic signaling of the plant N demand controls numerous transcripts involved in root transcriptome reprogramming associated with early rhizobia interaction and nodule formation. SUPER NUMERIC NODULES (SUNN) has an important role in this control, but we found that major systemic N signaling responses remained active in the sunn mutant. Genes involved in the activation of nitrogen fixation are regulated by systemic N signaling in the mutant, explaining why its hypernodulation phenotype is not associated with higher nitrogen fixation of the whole plant. We show that the control of transcriptome reprogramming of nodule formation by systemic N signaling requires other pathway(s) that parallel the SUNN/CLE (CLAVATA3/EMBRYO SURROUNDING REGION-LIKE PEPTIDES) pathway
    corecore