26 research outputs found

    Seroconversion to Seasonal Influenza Viruses after A(H1N1)pdm09 Virus Infection, Quebec, Canada

    Get PDF
    We looked for cross-reactive antibodies in 122 persons with paired serum samples collected during the 2009 pandemic of influenza virus A(H1N1)pdm09. Eight (12%) of 67 persons with A(H1N1)pdm09 infection confirmed by reverse transcription PCR and/or serology also seroconverted to the seasonal A/Brisbane/59/2007 (H1N1) virus, compared with 1 (2%) of 55 A(H1N1)pdm09-negative persons (p<0.05)

    Randomized Controlled Ferret Study to Assess the Direct Impact of 2008–09 Trivalent Inactivated Influenza Vaccine on A(H1N1)pdm09 Disease Risk

    Get PDF
    During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008–09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008–09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008–09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p&gt;0.05). At Ch+14, both groups had recovered. Findings in influenza-naïve, systematically-infected ferrets may not replicate the human experience. While they cannot be considered conclusive to explain human observations, these ferret findings are consistent with direct, adverse effect of prior 2008–09 TIV receipt on A(H1N1)pdm09 illness. As such, they warrant further in-depth investigation and search for possible mechanistic explanations

    Cross-Lineage Influenza B and Heterologous Influenza A Antibody Responses in Vaccinated Mice: Immunologic Interactions and B/Yamagata Dominance

    Get PDF
    The annually reformulated trivalent inactivated influenza vaccine (TIV) includes both influenza A/subtypes (H3N2 and H1N1) but only one of two influenza B/lineages (Yamagata or Victoria). In a recent series of clinical trials to evaluate prime-boost response across influenza B/lineages, influenza-naïve infants and toddlers originally primed with two doses of 2008–09 B/Yamagata-containing TIV were assessed after two doses of B/Victoria-containing TIV administered in the subsequent 2009–10 and 2010–11 seasons. In these children, the Victoria-containing vaccines strongly recalled antibody to the initiating B/Yamagata antigen but induced only low B/Victoria antibody responses. To further evaluate this unexpected pattern of cross-lineage vaccine responses, we conducted additional immunogenicity assessment in mice. In the current study, mice were primed with two doses of 2008–09 Yamagata-containing TIV and subsequently boosted with two doses of 2010–11 Victoria-containing TIV (Group-Yam/Vic). With the same vaccines, we also assessed the reverse order of two-dose Victoria followed by two-dose Yamagata immunization (Group-Vic/Yam). The Group-Yam/Vic mice showed strong homologous responses to Yamagata antigen. However, as previously reported in children, subsequent doses of Victoria antigen substantially boosted Yamagata but induced only low antibody response to the immunizing Victoria component. The reverse order of Group-Vic/Yam mice also showed low homologous responses to Victoria but subsequent heterologous immunization with even a single dose of Yamagata antigen induced substantial boost response to both lineages. For influenza A/H3N2, homologous responses were comparably robust for the differing TIV variants and even a single follow-up dose of the heterologous strain, regardless of vaccine sequence, substantially boosted antibody to both strains. For H1N1, two doses of 2008–09 seasonal antigen significantly blunted response to two doses of the 2010–11 pandemic H1N1 antigen. Immunologic interactions between influenza viruses considered antigenically distant and in particular the cross-lineage influenza B and dominant Yamagata boost responses we have observed in both human and animal studies warrant further evaluation

    Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures

    Get PDF
    Influenza virus infections remain a major and recurrent public health burden. The intrinsic ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated vaccines, as well as the emergence of resistance against a limited antiviral arsenal, highlight the critical need for novel therapeutic approaches. In this context, the aim of this study was to develop and validate an innovative strategy for drug repurposing as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most promising candidates in Phase II clinical trials. We exploited in vivo global transcriptomic signatures of infection directly obtained from a patient cohort to determine a shortlist of already marketed drugs with newly identified, host-targeted inhibitory properties against influenza virus. The antiviral potential of selected repurposing candidates was further evaluated in vitro, in vivo, and ex vivo. Our strategy allowed the selection of a shortlist of 35 high potential candidates out of a rationalized computational screening of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a calcium channel blocker currently used in the treatment of hypertension, as a promising option for the treatment of influenza infections. Additionally, transcriptomic signature analysis further revealed the so far undescribed capacity of diltiazem to modulate the expression of specific genes related to the host antiviral response and cholesterol metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization for the initiation of a Phase II clinical trial. This original, host-targeted, drug repurposing strategy constitutes an effective and highly reactive process for the rapid identification of novel anti-infectious drugs, with potential major implications for the management of antimicrobial resistance and the rapid response to future epidemic or pandemic (re)emerging diseases for which we are still disarmed

    Un projet d’école en centre-ville : connaître les possibles pour mieux soutenir son développement

    No full text
    International audienc

    Les adolescents et les adultes ayant un TSA : Le point de vue de leurs parents

    No full text
    International audienc

    Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice.

    No full text
    Human metapneumovirus (hMPV) is a paramyxovirus responsible for respiratory tract infections in humans. Our objective was to investigate whether hMPV could predispose to long-term bacterial susceptibility, such as previously observed with influenza viruses. BALB/c mice were infected with hMPV or influenza A and, 14 days following viral infection, challenged with Streptococcus pneumoniae. Only mice previously infected with influenza A demonstrated an 8% weight loss of their body weight 72 h following S. pneumoniae infection, which correlated with an enhanced lung bacterial replication of >7 log(10) compared with pneumococcus infection alone. This enhanced bacterial replication was not related to altered macrophage or neutrophil recruitment or deficient production of critical cytokines. However, bacterial challenge induced the production of gamma interferon in bronchoalveolar lavages of influenza-infected mice, but not in those of hMPV-infected animals. In conclusion, hMPV does not cause long-term impairment of pneumococcus lung clearance, in contrast to influenza A virus.info:eu-repo/semantics/publishe

    Explorer la richesse de l’écriture tout au long de la vie

    No full text
    Publié dans la revue "L'Express" n°9, printemps 2016
    corecore