6 research outputs found

    Effect of bicarbonate and lactate buffer on glucose and lactate metabolism during hemodiafiltration in patients with multiple organ failure

    Get PDF
    Objective: To compare the effects of sodium bicarbonate and lactate for continuous veno-venous hemodiafiltration (CVVHDF) in critically ill patients. Design and settings: Prospective crossed-over controlled trial in the surgical and medical ICUs of a university hospital. Patients: Eight patients with multiple organ dysfunction syndrome (MODS) requiring CVVHDF. Intervention: Each patient received the two buffers in a randomized sequence over two consecutive days. Measurements and results: The following variables were determined: acid-base parameters, lactate production and utilization (13C lactate infusion), glucose turnover (6,62H2-glucose), gas exchange (indirect calorimetry). No side effect was observed during lactate administration. Baseline arterial acid-base variables were equal with the two buffers. Arterial lactate (2.9 versus 1.5mmol/l), glycemia (+18%) and glucose turnover (+23%) were higher in the lactate period. Bicarbonate and glucose losses in CVVHDF were substantial, but not lactate elimination. Infusing 13C lactate increased plasma lactate levels equally with the two buffers. Lactate clearance (7.8±0.8 vs 7.5±0.8ml/kg per min in the bicarbonate and lactate periods) and endogenous production rates (14.0±2.6 vs 13.6±2.6mmol/kg per min) were similar. 13C lactate was used as a metabolic substrate, as shown by 13CO2 excretion. Glycemia and metabolic rate increased significantly and similarly during the two periods during lactate infusion. Conclusion: Lactate was rapidly cleared from the blood of critically ill patients without acute liver failure requiring CVVHDF, being transformed into glucose or oxidized. Lactate did not exert undesirable effects, except moderate hyperglycemia, and achieved comparable effects on acid-base balance to bicarbonat

    Effects of endotoxin on lactate metabolism in humans.

    Get PDF
    ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997

    Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery.

    No full text
    International audienceBACKGROUND: Hyperlactatemia is a prominent feature of cardiogenic shock. It can be attributed to increased tissue production of lactate related to dysoxia and to impaired utilization of lactate caused by liver and tissue underperfusion. The aim of this prospective observational study was to determine the relative importance of these mechanisms during cardiogenic shock. PATIENTS: Two groups of subjects were compared: seven cardiac surgery patients with postoperative cardiogenic shock and seven healthy volunteers. METHODS: Lactate metabolism was assessed by using two independent methods: a) a pharmacokinetic approach based on lactate plasma level decay after the infusion of 2.5 mmol x kg(-1) of sodium lactate; and b) an isotope dilution technique for which the transformation of [13C]lactate into [13C]glucose and 13CO2 was measured. Glucose turnover was determined using 6,62H2-glucose. RESULTS: All patients suffered from profound shock requiring high doses of inotropes and vasopressors. Mean arterial lactate amounted to 7.8 +/- 3.4 mmol x L(-1) and mean pH to 7.25 +/- 0.07. Lactate clearance was not different in the patients and controls (7.8 +/- 3.4 vs. 10.3 +/- 2.1 mL x kg(-1) x min(-1)). By contrast, lactate production was markedly enhanced in the patients (33.6 +/- 16.4 vs. 9.6 +/- 2.2 micromol x kg(-1) x min(-1); p < .01). Exogenous [13C]lactate oxidation was not different (107 +/- 37 vs. 103 +/- 4 mmol), and transformation of [13C]lactate into [13C]glucose was not different (20.0 +/- 13.7 vs. 15.2% +/- 6.0% of exogenous lactate). Endogenous glucose production was markedly increased in the patients (1.95 +/- 0.26 vs. 5.3 +/- 3.0 mg x kg(-1) x min(-1); p < .05 [10.8 +/- 1.4 vs. 29.4 +/- 16.7 micromol x kg(-1) x min(-1)]), whereas net carbohydrate oxidation was not different (1.7 +/- 0.5 vs. 1.3 +/- 0.3 mg x kg(-1) x min(-1) [9.4 +/- 2.8 vs. 7.2 +/- 1.7 micromol x kg(-1) x min(-1)]). CONCLUSIONS: Hyperlactatemia in early postoperative cardiogenic shock was mainly related to increased tissue lactate production, whereas alterations of lactate utilization played only a minor role. Patients had hyperglycemia and increased nonoxidative glucose disposal, suggesting that glucose-induced stimulation of tissue glucose uptake and glycolysis may contribute significantly to hyperlactatemia

    Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery.

    No full text
    International audienceBACKGROUND: Hyperlactatemia is a prominent feature of cardiogenic shock. It can be attributed to increased tissue production of lactate related to dysoxia and to impaired utilization of lactate caused by liver and tissue underperfusion. The aim of this prospective observational study was to determine the relative importance of these mechanisms during cardiogenic shock. PATIENTS: Two groups of subjects were compared: seven cardiac surgery patients with postoperative cardiogenic shock and seven healthy volunteers. METHODS: Lactate metabolism was assessed by using two independent methods: a) a pharmacokinetic approach based on lactate plasma level decay after the infusion of 2.5 mmol x kg(-1) of sodium lactate; and b) an isotope dilution technique for which the transformation of [13C]lactate into [13C]glucose and 13CO2 was measured. Glucose turnover was determined using 6,62H2-glucose. RESULTS: All patients suffered from profound shock requiring high doses of inotropes and vasopressors. Mean arterial lactate amounted to 7.8 +/- 3.4 mmol x L(-1) and mean pH to 7.25 +/- 0.07. Lactate clearance was not different in the patients and controls (7.8 +/- 3.4 vs. 10.3 +/- 2.1 mL x kg(-1) x min(-1)). By contrast, lactate production was markedly enhanced in the patients (33.6 +/- 16.4 vs. 9.6 +/- 2.2 micromol x kg(-1) x min(-1); p < .01). Exogenous [13C]lactate oxidation was not different (107 +/- 37 vs. 103 +/- 4 mmol), and transformation of [13C]lactate into [13C]glucose was not different (20.0 +/- 13.7 vs. 15.2% +/- 6.0% of exogenous lactate). Endogenous glucose production was markedly increased in the patients (1.95 +/- 0.26 vs. 5.3 +/- 3.0 mg x kg(-1) x min(-1); p < .05 [10.8 +/- 1.4 vs. 29.4 +/- 16.7 micromol x kg(-1) x min(-1)]), whereas net carbohydrate oxidation was not different (1.7 +/- 0.5 vs. 1.3 +/- 0.3 mg x kg(-1) x min(-1) [9.4 +/- 2.8 vs. 7.2 +/- 1.7 micromol x kg(-1) x min(-1)]). CONCLUSIONS: Hyperlactatemia in early postoperative cardiogenic shock was mainly related to increased tissue lactate production, whereas alterations of lactate utilization played only a minor role. Patients had hyperglycemia and increased nonoxidative glucose disposal, suggesting that glucose-induced stimulation of tissue glucose uptake and glycolysis may contribute significantly to hyperlactatemia

    Effect of bicarbonate and lactate buffer on glucose and lactate metabolism during hemodiafiltration in patients with multiple organ failure.

    Get PDF
    OBJECTIVE: To compare the effects of sodium bicarbonate and lactate for continuous veno-venous hemodiafiltration (CVVHDF) in critically ill patients. DESIGN AND SETTINGS: Prospective crossed-over controlled trial in the surgical and medical ICUs of a university hospital. PATIENTS: Eight patients with multiple organ dysfunction syndrome (MODS) requiring CVVHDF. INTERVENTION: Each patient received the two buffers in a randomized sequence over two consecutive days. MEASUREMENTS AND RESULTS: The following variables were determined: acid-base parameters, lactate production and utilization ((13)C lactate infusion), glucose turnover (6,6(2)H(2)-glucose), gas exchange (indirect calorimetry). No side effect was observed during lactate administration. Baseline arterial acid-base variables were equal with the two buffers. Arterial lactate (2.9 versus 1.5 mmol/l), glycemia (+18%) and glucose turnover (+23%) were higher in the lactate period. Bicarbonate and glucose losses in CVVHDF were substantial, but not lactate elimination. Infusing (13)C lactate increased plasma lactate levels equally with the two buffers. Lactate clearance (7.8+/-0.8 vs 7.5+/-0.8 ml/kg per min in the bicarbonate and lactate periods) and endogenous production rates (14.0+/-2.6 vs 13.6+/-2.6 mmol/kg per min) were similar. (13)C lactate was used as a metabolic substrate, as shown by (13)CO(2) excretion. Glycemia and metabolic rate increased significantly and similarly during the two periods during lactate infusion. CONCLUSION: Lactate was rapidly cleared from the blood of critically ill patients without acute liver failure requiring CVVHDF, being transformed into glucose or oxidized. Lactate did not exert undesirable effects, except moderate hyperglycemia, and achieved comparable effects on acid-base balance to bicarbonate
    corecore