130 research outputs found

    Origin, ore forming fluid evolution and timing of the LogrosĂĄn Sn-(W) ore deposits (Central Iberian Zone, Spain)

    Get PDF
    The Logrosán Sn–(W) ore deposits in the metallogenic Sn–W province of the European Variscan Belt consist of endo- and exogranitic greisen-type and quartz–cassiterite veins associated with a S-type granite. Mineral characterization, fluid inclusion study, isotope geochemistry and Ar–Ar geochronology have been combined in order to reconstruct the conditions for Sn–(W) mineralization. The endo- and exogranitic mineralization must have been developed in a relatively long-lived system (~ 308–303 Ma), during or soon after the emplacement of the Logrosán related-granite (at ca. 308 Ma). The mineralizing fluids are characterized by complex aqueous and volatile (H2O–N2–CO2–CH4–NaCl) fluid inclusions. Microthermometry and Raman analyses indicate that fluid composition evolved from N2–CH4 to N2-rich, followed by CO2-rich fluids, with varying amounts of H2O. The presence of N2 and CH4 suggests the interaction with fluids derived from the nearby metasedimentary host rocks. A model of host-rock interaction, assimilation, and mixing of metamorphic and magmatic fluids, resulting in change of the redox conditions, is proposed for tin deposition. Later sulfide minerals were precipitated as a result of pressure and temperature release

    The granite hosted gold deposit of Moulin de Chéni (Saint-Yrieix district, Massif Central, France): petrographic, structural, fluid inclusion and oxygen isotope constraints

    Get PDF
    The Moulin de ChĂ©ni orogenic gold deposit is the only granite-hosted deposit of the Saint-Yrieix district, French Massif Central. It occurs in 338±1.5Ma-old peraluminous leucogranites and is characterized by intense microfracturing and bleaching of the granite in relation to pervasive sulfide crystallization. Formation of quartz veins and gold deposition occurred in two successive stages: an early "mesozonal” stage of quartz-sulfide (Fe-As-S) deposition, usually devoid of gold and a late "epizonal” stage of base metal and gold deposition. Both stages postdate peak metamorphism and granite intrusion. The genesis of the deposit is the result of four successive fluid events: (1) Percolation of aqueous-carbonic metamorphic fluids under an assumed lithostatic regime of 400-450°C, at a maximum depth of 13km; (2) Formation of the main quartz lodes with coeval K-alteration and introduction of As and S from aqueous-carbonic fluids percolating along regional faults. Arsenopyrite and pyrite deposition was linked to the alteration of Fe-silicates into K-feldspar and phengite at near-constant iron content in the bulk granite. Temperature was similar to that of the preceding stage, but pressure decreased to 100-50MPa, suggesting rapid uplift of the basement up to 7.5km depth; (3) The resulting extensional tectonic leads to the deposition of gold, boulangerite, galena and sphalerite in brecciated arsenopyrite and pyrite from aqueous fluids during a mixing process. Temperature and salinity decrease from 280 to 140°C and 8.1wt% eq. NaCl to 1.6wt% eq. NaCl, respectively; (4) Sealing of the late fault system by barren comb quartz which precipitated from dilute meteoric aqueous fluids (1.6wt% eq. NaCl to 0.9wt% eq. NaCl) under hydrostatic conditions at 200-150°

    Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals

    No full text
    International audienceLower- to Middle-Triassic sandstones from eastern Paris Basin were buried to a maximum depth of 2500 m at a paleo-temperature of about 100 °C. They contain extensive amounts of authigenic platy and filamentous illite particles similar to those reported in reservoirs generally buried at 3000 to 5000 m and subjected to temperatures of 120 to 150 °C. To evaluate this unexpected occurrence, such sandstones were collected from drill cores between 1825 and 2000 m depth, and nanometric-sized sub-fractions were separated. The illite crystals were identified by XRD, observed by SEM and TEM, analyzed for their major, trace, rare-earth elements and oxygen isotope compositions, and dated by K-Ar and Rb-Sr.Illite particles display varied growth features in the rock pore space and on authigenic quartz and adularia that they postdate. TEM-EDS crystal-chemical in situ data show that the illite lath/fiber and platelet morphologies correspond at least to two populations with varied interlayer charges: between 0.7 and 0.9 in the former and between 0.8 and 1.0 in the latter, the Fe/Fe+Mg ratio being higher in the platelets. Except for the deeper conglomerate, the PAAS-normalized REE patterns of the illite crystals are bell-shaped, enriched in middle REEs. Ca-carbonates and Ca-phosphates were detected together with illite in the separates. These soluble components yield 87Sr/86Sr ratios that are not strictly in chemical equilibrium with the illite crystals, suggesting successive fluids flows with different chemical compositions. The K-Ar data of finer <0.05 ÎŒm illite separates confirm two crystallization events at 179.4 ± 4.5 and 149.4 ± 2.5 Ma during the Early and Late Jurassic. The slightly coarser fractions contain also earlier crystallized or detrital K-bearing minerals characterized by lower ÎŽ18O values. The ÎŽ18O of the finest authigenic illite separates tends to decrease slightly with depth, from 18.2 (± 0.2) to 16.3 (± 0.2) ‰, suggesting different but contemporaneous crystallization conditions deeper in the section.The illite platelets and filaments crystallized in changing physical-chemical crystallization conditions induced by fluids flows through the host-rock pore system. These flow events were probably driven by repetitive rifting episodes of the North Atlantic Ocean, although located several hundreds kilometers away from eastern Paris Basin, and/or by fracturing events in the nearby basement of the Vosges Massif. Complex relationships between geodynamical events, thermal anomalies, and advective fluids confirm that remote tectonic activities can impact quiescent basins, even if located far from tectono-thermal activities, by discrete and long-distance fluid flows

    Evolution of porewater composition through time in limestone aquifers: Salinity and D/H of fluid inclusion water in authigenic minerals (Jurassic of the eastern Paris basin, France)

    No full text
    International audiencePast water circulations can significantly reduce the porosity and permeability of marine limestones. This is particularly the case in the Middle (Bathonian/Bajocian) to Upper (Oxfordian) Jurassic limestones from the eastern border of the Paris Basin. The knowledge of the timing, the temperature and composition of paleowaters is essential to model the hydrological evolution in this area where the Callovian–Oxfordian claystones are studied for the storage of nuclear wastes. In this way, fluid inclusions hosted in low-temperature (< 60°C) authigenic calcite, quartz and celestite crystals were analyzed by Raman spectroscopy and mass spectrometry to determine the chlorinity and D/H ratios. Chlorinity measurements (mmol Cl per liter of water) in fluid inclusions trapped in authigenic crystals during the late Jurassic/early Cretaceous period revealed unexpected high values, up to 3800 mmol l− 1, indicating that brines were involved in some of the diagenetic crystallization processes. By contrast, fluid inclusions in calcite cements of Cenozoic age within the Oxfordian limestones have low Cl concentration (less than 150 mmol l− 1), thus showing that a dilution event caused by water infiltrations during the Cretaceous uplift of this part of the basin has flushed out the original saline porewater. By coupling ήD of fluid inclusion with ή18O of calcite crystals, we estimate that calcite precipitation occurred at temperatures between 25 and 53°C. The hydrogen isotope composition of calcite-forming water is different between the Middle Jurassic (ήD ranging from − 20 to − 35.8‰V-SMOW) and the overlying Oxfordian limestone (ήD from − 59.5 to − 44.8‰V-SMOW). Present-day groundwaters are also of distinct composition on both sides of the Oxfordian claystones, indicating that limestone aquifers underwent independent hydrologic evolutions since the early diagenetic Jurassic cementation
    • 

    corecore