27 research outputs found

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Nonspecific Signs and/or Symptoms of Cancer: A Retrospective, Observational Analysis from a Secondary Care, US Community Oncology Dataset

    No full text
    To help determine the unmet need for improved diagnostic tools to evaluate patients with nonspecific signs and/or symptoms (NSSS) and suspicion of cancer, we examined patient characteristics, diagnostic journey, and cancer incidence of patients with NSSS within The US Oncology Network (The Network), a secondary care community oncology setting. This retrospective, observational cohort study included patients aged ≥40 years with ≥1 NSSS in their problem list at their first visit within The Network (the index date) between 1 January 2016 and 31 December 2020. Patients were followed longitudinally with electronic health record data for initial cancer diagnosis, new noncancer diagnosis, death, end of study observation period, or 12 months, whichever occurred first. Of 103,984 patients eligible for inclusion, 96,722 presented with only 1 NSSS at index date; 6537/103,984 (6.3%) were diagnosed with 1 primary cancer within 12 months after the index date; 3825/6537 (58.5%) with hematologic malignancy, and 2712/6537 (41.5%) with solid tumor. Among patients diagnosed with cancer (n = 6774), the median time to cancer diagnosis after their first visit within The Network was 5.13 weeks. This study provides a real-world perspective on cancer incidence in patients with NSSS referred to a secondary care setting and highlights the unmet need for improved diagnostic tools to improve cancer outcomes

    Genetic ancestry and population differences in levels of inflammatory cytokines in women: Role for evolutionary selection and environmental factors

    No full text
    <div><p>Selection pressure due to exposure to infectious pathogens endemic to Africa may explain distinct genetic variations in immune response genes. However, the impact of those genetic variations on human immunity remains understudied, especially within the context of modern lifestyles and living environments, which are drastically different from early humans in sub Saharan Africa. There are few data on population differences in constitutional immune environment, where genetic ancestry and environment are likely two primary sources of variation. In a study integrating genetic, molecular and epidemiologic data, we examined population differences in plasma levels of 14 cytokines involved in innate and adaptive immunity, including those implicated in chronic inflammation, and possible contributing factors to such differences, in 914 AA and 855 EA women. We observed significant differences in 7 cytokines, including higher plasma levels of CCL2, CCL11, IL4 and IL10 in EAs and higher levels of IL1RA and IFNα2 in AAs. Analyses of a wide range of demographic and lifestyle factors showed significant impact, with age, education level, obesity, smoking, and alcohol intake, accounting for some, but not all, observed population differences for the cytokines examined. Levels of two pro-inflammatory chemokines, CCL2 and CCL11, were strongly associated with percent of African ancestry among AAs. Through admixture mapping, the signal was pinpointed to local ancestry at 1q23, with fine-mapping analysis refined to the Duffy-null allele of rs2814778. In AA women, this variant was a major determinant of systemic levels of CCL2 (p = 1.1e-58) and CCL11 (p = 2.2e-110), accounting for 19% and 40% of the phenotypic variance, respectively. Our data reveal strong ancestral footprints in inflammatory chemokine regulation. The Duffy-null allele may indicate a loss of the buffering function for chemokine levels. The substantial immune differences by ancestry may have broad implications to health disparities between AA and EA populations.</p></div
    corecore