41 research outputs found

    Prognostic significance of T-cell–inflamed gene expression profile and PD-L1 expression in patients with esophageal cancer

    Get PDF
    PURPOSE: The ability of the T‐cell–inflamed gene expression profile (GEP) to predict clinical outcome in esophageal cancer (EC) is unknown. This retrospective observational study assessed the prognostic value of GEP and programmed death ligand 1 (PD‐L1) expression in patients with EC treated in routine clinical practice. METHODS: Tumor samples of 294 patients from three centers in Denmark, South Korea, and the United States, collected between 2005 and 2017, were included. T‐cell–inflamed GEP score was defined as non‐low or low using a cutoff of −1.54. A combined positive score (CPS) ≥10 was defined as PD‐L1 expression positivity. Associations between overall survival (OS) and GEP status and PD‐L1 expression were explored by Cox proportional hazards models adjusting for age, sex, histology, stage, and performance status. RESULTS: Median age was 65 years; 63% of patients had adenocarcinoma (AC) and 37% had squamous cell carcinoma (SCC). Thirty‐six percent of tumors were GEP non‐low, with higher prevalence in AC (46%) than SCC (18%). Twenty‐one percent were PD‐L1–positive: 32% in South Korean samples versus 16% in non‐Asian samples and 26% in SCC versus 18% in AC. GEP scores and PD‐L1 CPS were weakly correlated (Spearman’s R = 0.363). OS was not significantly associated with GEP status (non‐low vs low; adjusted hazard ratio, 0.91 [95% CI, 0.69–1.19]) or PD‐L1 expression status. CONCLUSION: Neither GEP nor PD‐L1 expression was a prognostic marker in Asian and non‐Asian patients with EC

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore