6 research outputs found

    A Chemical Proteomics Approach to Phosphatidylinositol 3-Kinase Signaling in Macrophages

    Get PDF
    Prior work using lipid-based affinity matrices has been done to investigate distinct sets of lipid-binding proteins, and one series of experiments has proven successful in mammalian cells for the proteome-wide identification of lipid-binding proteins. However, most lipid-based proteomics screens require scaled up sample preparation, are often composed of multiple cell types, and are not adapted for simultaneous signal transduction studies. Herein we provide a chemical proteomics strategy that uses cleavable lipid "baits" with broad applicability to diverse biological samples. The novel baits were designed to avoid preparative steps to allow functional proteomics studies when the biological source is a limiting factor. Validation of the chemical baits was first confirmed by the selective isolation of several known endogenous phosphatidylinositol 3-kinase signaling proteins using primary bone marrow-derived macrophages. The use of this technique for cellular proteomics and MS/MS analysis was then demonstrated by the identification of known and potential novel lipid-binding proteins that was confirmed in vitro for several proteins by direct lipid-protein interactions. Further to the identification, the method is also compatible with subsequent signal transduction studies, notably for protein kinase profiling of the isolated lipid-bound protein complexes. Taken together, this integration of minimal scale proteomics, lipid chemistry, and activity-based readouts provides a significant advancement in the ability to identify and study the lipid proteome of single, relevant cell types

    Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth

    Get PDF
    Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion

    Convergent Functional Genomics of Oligodendrocyte Differentiation Identifies Multiple Autoinhibitory Signaling Circuits▿ †

    No full text
    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition

    Functional Whole-genome Analysis Identifies Polo-like Kinase 2 and Poliovirus Receptor as Essential for Neuronal Differentiation Upstream of the Negative Regulator αB-crystallin

    No full text
    This study aimed at identifying transcriptional changes associated to neuronal differentiation induced by six distinct stimuli using whole-genome microarray hybridization analysis. Bioinformatics analyses revealed the clustering of these six stimuli into two categories, suggesting separate gene/pathway dependence. Treatment with specific inhibitors demonstrated the requirement of both Janus kinase and microtubule-associated protein kinase activation to trigger differentiation with nerve growth factor (NGF) and dibutyryl cAMP. Conversely, activation of protein kinase A, phosphatidylinositol-3-kinase α, and mammalian target of rapamycin, although required for dibutyryl cAMP-induced differentiation, exerted a negative feedback on NGF-induced differentiation. We identified Polo-like kinase 2 (Plk2) and poliovirus receptor (PVR) as indispensable for NGF-driven neuronal differentiation and αB-crystallin (Cryab) as an inhibitor of this process. Silencing of Plk2 or PVR blocked NGF-triggered differentiation and Cryab down-regulation, while silencing of Cryab enhanced NGF-induced differentiation. Our results position both Plk2 and PVR upstream of the negative regulator Cryab in the pathway(s) leading to neuronal differentiation triggered by NGF
    corecore