8 research outputs found
Recommended from our members
The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience.
This study revisited the Dohner prognostic hierarchy in a cohort of 1585 well-documented patients with chronic lymphocytic leukaemia. The duration of both time to first treatment (TTFT) and overall survival (OS) were significantly longer than observed previously, and this is at least partly due to improved therapeutic options. Deletion 13q remains the most favourable prognostic group with median TTFT and OS from fluorescence in situ hybridization (FISH) testing of 72 months and >12 years, respectively. Deletion 11q had the poorest median TTFT (22 months) and 17p deletion the poorest median OS (5 years). The percentages of abnormal nuclei were significantly associated with differential TTFT for the trisomy 12, 13q and 17p deletion cohorts but not for the 11q deletion cohort. From the date of the first FISH study, patients with >85% 13q deletion nuclei had a notably shorter TTFT (24 months). Patients with ≤20% 17p deletion nuclei had longer median TTFT and OS from the date of the first FISH study (44 months and 11 years), and were more likely to be IGHV mutated
The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience
Summary This study revisited the Dohner prognostic hierarchy in a cohort of 1585 well-documented patients with chronic lymphocytic leukaemia. The duration of both time to first treatment (TTFT) and overall survival (OS) were significantly longer than observed previously, and this is at least partly due to improved therapeutic options. Deletion 13q remains the most favourable prognostic group with median TTFT and OS from fluorescence in situ hybridization (FISH) testing of 72 months and >12 years, respectively. Deletion 11q had the poorest median TTFT (22 months) and 17p deletion the poorest median OS (5 years). The percentages of abnormal nuclei were significantly associated with differential TTFT for the trisomy 12, 13q and 17p deletion cohorts but not for the 11q deletion cohort. From the date of the first FISH study, patients with >85% 13q deletion nuclei had a notably shorter TTFT (24 months). Patients with ≤20% 17p deletion nuclei had longer median TTFT and OS from the date of the first FISH study (44 months and 11 years), and were more likely to be IGHV mutated
Recommended from our members
Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.
Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs
Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia
Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs