18 research outputs found

    Deep Chandra observations of NGC 1404 : cluster plasma physics revealed by an infalling early-type galaxy

    Get PDF
    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot yet be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new {\sl Chandra} X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium (ISM) of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0\farcs5=45\,pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of {\sl Chandra}, and the very deep (670 ksec) exposure. At the leading edge, we observe sub-kpc scale eddies generated by Kelvin-Helmholtz instability and put an upper limit of 5\% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5\,ÎŒG to allow KHI to develop. The lack of evident magnetic draping layer just outside the contact edge is consistent with such an upper limit

    Chandra Observations of NGC 4438: An Environmentally Damaged Galaxy in the Virgo Cluster

    Full text link
    We present results from a 25 ksec CHANDRA ACIS-S observation of galaxies NGC4438 and NGC4435 in the Virgo Cluster. X-ray emission in NGC4438 is observed in a ~700 pc nuclear region, a 2.3 kpc spherical bulge, and a network of filaments extending 4-10 kpc to the W and SW of the galaxy. The X-ray emission in all 3 regions is highly correlated to similar features observed in Halpha. Spectra of the filaments and bulge are well represented by a 0.4 keV MEKAL model with combined 0.3-2 keV intrinsic luminosity of 1.24x10^{40}erg/s, electron densities ~ 0.02-0.04 cm^{-3}, cooling times of 400-700 Myr and X-ray gas mass <~ 3.7x10^8 Msolar. In the nuclear region of NGC4438 X-ray emission is seen from the nucleus and from two outflow bubbles extending 360(730) pc to the NW(SE) of the nucleus. The spectrum of the NW outflow bubble plus nucleus is well fitted by an absorbed (n_H=1.9x10^{21} cm^{-2}) 0.58 keV MEKAL plasma model plus a heavily absorbed (n_H = 2.9 x10^{22} cm^{-2}) Gamma = 2, power law component. The electron density, cooling time, and X-ray gas mass in the NW outflow are ~0.5 cm^{-3}, 30 Myr and 3.5x10^6 Msolar. Weak X-ray emission is observed in the central region of NGC4435 with the peak of the hard emission coincident with the galaxy's optical center; while the peak of the soft X-ray emission is displaced 316 pc to the NE. The spectrum of NGC 4435 is well fitted by a non-thermal power law plus a thermal component from 0.2-0.3 keV diffuse ISM gas. We argue that the X-ray properties of gas outside the nuclear region in NGC4438 and in NGC4435 favor a high velocity, off-center collision between these galaxies ~ 100 Myr ago; while the nuclear X-ray emitting outflow gas in NGC4438 has been heated only recently (within ~ 1-2 Myr) by shocks (v_s ~ 600 kms^{-1}) possibly powered by a central AGN.Comment: 40 pages, 7 figures; minor changes to conform to published version, improved spectral fits to NGC 4435, improved figures 3,5; new figures 6b,

    Capturing the 3D motion of an infalling galaxy via fluid dynamics

    Get PDF
    The Fornax Cluster is the nearest galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical "cold front" that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse intracluster medium. We measure the angular pressure variation along the cold front using a very deep (670\,ksec) {\sl Chandra} X-ray observation. We are taking the classical approach -- using stagnation pressure to determine a substructure's speed -- to the next level by not only deriving a general speed but also directionality which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33∘ and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters

    XMM-Newton Observation of an X-ray Trail Between the Spiral Galaxy NGC6872 and the Central Elliptical NGC6876 in the Pavo Group

    Full text link
    We present XMM-Newton observations of a trail of enhanced X-rayemission extending along the 8'.7 X 4' region between the spiral NGC6872 and the dominant elliptical NGC6876 in the Pavo Group,the first known X-ray trail associated with a spiral galaxy in a poor galaxy group and, with projected length of 90 kpc, one of the longest X-ray trails observed in any system. The X-ray surface brightness in the trail region is roughly constant beyond ~20 kpc of NGC6876 in the direction of NGC6872. The trail is hotter (~ 1 keV) than the undisturbed Pavo IGM (~0.5 keV) and has low metal abundances (0.2 Zsolar). The 0.5-2 keV luminosity of the trail, measured using a 67 X 90 kpc rectangular region, is 6.6 X 10^{40} erg/s. We compare the properties of gas in the trail to the spectral properties of gas in the spiral NGC6872 and in the elliptical NGC6876 to constrain its origin. We suggest that the X-ray trail is either IGM gas gravitationally focused into a Bondi-Hoyle wake, a thermal mixture of ~64% Pavo IGM gas with ~36% galaxy gas that has been removed from the spiral NGC6872 by turbulent viscous stripping, or both, due to the spiral's supersonic motion at angle xi ~ 40 degrees with respect to the plane of the sky, past the Pavo group center (NGC6876) through the densest region of the Pavo IGM. Assuming xi = 40 degrees and a filling factor eta in a cylindrical volume with radius 33 kpc and projected length 90 kpc, the mean electron density and total hot gas mass in the trail is 9.5 X 10^{-4}*eta^{-1/2} cm^{-3} and 1.1 X 10^{10}*eta^{1/2} Msolar, respectively.Comment: typos corrected in Eq. 7 & 8, figures and discussion unchanged, 39 pages, 11 postscript figures, submitted to Ap

    Chandra Observations of Galaxy Cluster Abell 2218

    Get PDF
    We present results from two observations (combined exposure of ~17 ks) of galaxy cluster A2218 using the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory that were taken on October 19, 1999. Using a Raymond-Smith single temperature plasma model corrected for galactic absorption we find a mean cluster temperature of kT = 6.9+/-0.5 keV, metallicity of 0.20+/-0.13 (errors are 90 % CL) and rest-frame luminosity in the 2-10 keV energy band of 6.2x10^{44} erg/s in a LambdaCDM cosmology with H_0=65 km/s/Mpc. The brightness distribution within 4'.2 of the cluster center is well fit by a simple spherical beta model with core radius 66".4 and beta = 0.705 . High resolution Chandra data of the inner 2' of the cluster show the x-ray brightness centroid displaced ~22" from the dominant cD galaxy and the presence of azimuthally asymmetric temperature variations along the direction of the cluster mass elongation. X-ray and weak lensing mass estimates are in good agreement for the outer parts (r > 200h^{-1}) of the cluster; however, in the core the observed temperature distribution cannot reconcile the x-ray and strong lensing mass estimates in any model in which the intracluster gas is in thermal hydrostatic equilibrium. Our x-ray data are consistent with a scenario in which recent merger activity in A2218 has produced both significant non-thermal pressure in the core and substructure along the line of sight; each of these phenomena probably contributes to the difference between lensing and x-ray core mass estimates.Comment: 33 pages, 6 figures, uses AASTeX 5.02, ApJ submitte

    Hydrodynamical Simulations of the Lyman Alpha Forest: Model Comparisons

    Get PDF
    We investigate the properties of the Lyman alpha forest as predicted by numerical simulations for a range of currently viable cosmological models. This is done in order to understand the dependencies of the forest on cosmological parameters. Focusing on the redshift range from two to four, we show that: (1) most of the evolution in the distributions of optical depth, flux and column density can be understood by simple scaling relations, (2) the shape of optical depth distribution is a sensitive probe of the amplitude of density fluctuations on scales of a few hundred kpc, (3) the mean of the b distribution (a measure of the width of the absorption lines) is also very sensitive to fluctuations on these scales, and decreases as they increase. We perform a preliminary comparison to observations, where available. A number of other properties are also examined, including the evolution in the number of lines, the two-point flux distribution and the HeII opacity.Comment: 37 pages, 21 figures, submitted to Ap

    Deep Chandra Observations of Edges and Bubbles in the NGC 5846 Galaxy Group

    Full text link
    We use a combined 120 ks Chandra exposure to analyze X-ray edges produced by non-hydrostatic gas motions (sloshing) from galaxy collisions, and cavities formed by AGN activity. Evidence for gas sloshing is seen in the spiral morphology and multiple cold front edges in NGC 5846's X-ray surface brightness distribution, while lack of spiral structure in the temperature map suggests the perturbing interaction was not in the plane of the sky. Density and spectral modeling across the edges indicate the relative motion of gas in the cold fronts is at most transonic. Evidence for AGN activity is seen in two inner bubbles at 0.6 kpc, filled with 5 GHz and 1.5 GHz radio plasma and coincident with Halpha emission, and in a ghost bubble at 5.2 kpc west of NGC 5846's nucleus. The outburst energy and ages for the inner (ghost) bubbles are ~10^{55} ergs and ~2 Myr (~ 5 x 10^{55} ergs and 12 Myr), respectively, implying an AGN duty cycle of 10 Myr. The inner bubble rims are threaded with 9 knots, whose total 0.5-2 keV X-ray luminosity is 0.3 x10^{40} ergs, a factor ~2-3 less than that of the surrounding rims, and 0.7 keV mean temperature is indistinguishable from that of the rims. We suggest that the knots may be transient clouds heated by the recent passage of a shock from the last AGN outburst. We also observe gas stripping from a cE galaxy, NGC 5846A, in a 0.5 kpc long (~10^5 Msolar) hot gas tail, as it falls towards NGC 5846.Comment: 18 pages, 26 figures, ApJ, in pres

    Simulations of Pregalactic Structure Formation with Radiative Feedback

    Get PDF
    We present results from three-dimensional hydrodynamic simulations of the high redshift collapse of pregalactic clouds including feedback effects from a soft H2 photodissociating UV radiation field. The simulations use an Eulerian adaptive mesh refinement technique to follow the nonequilibrium chemistry of nine chemical species with cosmological initial conditions drawn from a popular Lambda-dominated cold dark matter model. The results confirm that the soft UV background can delay the cooling and collapse of small halos (~10^6 Msun). For reasonable values of the photo-dissociating flux, the H2 fraction is in equilibrium throughout most of the objects we simulate. We determine the mass threshold for collapse for a range of soft-UV fluxes and also derive a simple analytic expression. Continuing the simulations beyond the point of initial collapse demonstrates that the fraction of gas which can cool depends mostly on the virial mass of the halo and the amount of soft-UV flux, with remarkably little scatter. We parameterize this relation, for use in semi-analytic models.Comment: 18 pages, 7 figures, submitted to Ap
    corecore