21 research outputs found

    Analysis of X chromosome inactivation in autism spectrum disorders.

    Get PDF
    International audienceAutism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes

    An investigation of ribosomal protein L10 gene in autism spectrum disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism spectrum disorders (ASD) are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10) gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of <it>RPL10</it>, L206M and H213Q, were identified in four boys with ASD. Moreover, functional studies of mutant RPL10 in yeast exhibited aberrant ribosomal profiles. These results provided a novel aspect of disease mechanisms for autism – aberrant processes of ribosome biosynthesis and translation. To confirm these initial findings, we re-sequenced <it>RPL10 </it>exons and quantified mRNA transcript level of <it>RPL10 </it>in our samples.</p> <p>Methods</p> <p>141 individuals with ASD were recruited in this study. All <it>RPL10 </it>exons and flanking junctions were sequenced. Furthermore, mRNA transcript level of <it>RPL10 </it>was quantified in B lymphoblastoid cell lines (BLCL) of 48 patients and 27 controls using the method of SYBR Green quantitative PCR. Two sets of primer pairs were used to quantify the mRNA expression level of <it>RPL10</it>: RPL10-A and RPL10-B.</p> <p>Results</p> <p>No non-synonymous mutations were detected in our cohort. Male controls showed similar transcript level of RPL10 compared with female controls (RPL10-A, U = 81, P = 0.7; RPL10-B, U = 61.5, P = 0.2). We did not observe any significant difference in RPL10 transcript levels between cases and controls (RPL10-A, U = 531, P = 0.2; RPL10-B, U = 607.5, P = 0.7).</p> <p>Conclusion</p> <p>Our results suggest that RPL10 has no major effect on the susceptibility to ASD.</p

    Variations of the Candidate SEZ6L2 Gene on Chromosome 16p11.2 in Patients with Autism Spectrum Disorders and in Human Populations

    Get PDF
    Background: Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. Methodology/Principal Findings: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. Conclusions/Significance: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD

    Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.

    Get PDF
    International audienceSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders

    Exploratory analysis of obsessive compulsive symptom dimensions in children and adolescents: a Prospective follow-up study

    Get PDF
    BACKGROUND: Recent statistical approaches based on factor analysis of obsessive compulsive (OC) symptoms in adult patients have identified dimensions that seem more effective in symptom-based taxonomies and appear to be more stable over time. Although a phenotypic continuum from childhood to adulthood has been hypothesized, no factor analytic studies have been performed in juvenile patients, and the stability of OC dimensions in children and adolescents has not been assessed. METHODS: This study was designed to perform an exploratory factor analysis of OC symptoms in a sample of children and adolescents with OC disorder (OCD) and to investigate the course of factors over time (mean follow-up period: four years). RESULTS: We report for the first time that four symptom dimensions, remarkably similar to those previously described in adults, underlined the heterogeneity of OC symptoms in children and adolescents. Moreover, after follow-up, the symptom dimensions identified remained essentially unmodified. The changes observed concerned the intensity of dimensions rather than shifts from one dimension to another. CONCLUSION: These findings reinforce the hypothesis of a phenotypic continuum of OC symptoms from childhood to adulthood. They also strengthen the interest for investigating the clinical, neurobiological and genetic heterogeneity of OCD using a dimension-based approach

    Identification of Pathway-Biased and Deleterious Melatonin Receptor Mutants in Autism Spectrum Disorders and in the General Population

    Get PDF
    Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Δ502–505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients

    La psychopharmacologie chez l’enfant

    No full text
    corecore