27 research outputs found

    GPCR-based dopamine sensors-A detailed guide to inform sensor choice for In vivo imaging

    Get PDF
    Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a 'one-size-fits-all' sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. Molecular specificity, sensor kinetics, spectral properties, brightness, sensor scaffold and pharmacology can further influence sensor choice depending on the experimental question. In this review, we use DA as an example; we briefly summarize old and new techniques to monitor DA release, including DA biosensors. We then outline a map of DA heterogeneity across the brain and provide a guide for optimal sensor choice and implementation based on local DA levels and other experimental parameters. Altogether this review should act as a tool to guide DA sensor choice for end-users

    Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice

    Full text link
    Rationale Multiple lines of evidence suggest that the sex steroid hormone 17-β estradiol (E2) plays a protective role in schizophrenia. Systemic E2 enhances prepulse inhibition (PPI) of the acoustic startle reflex, an operational measure of sensorimotor gating known to be impaired in schizophrenia and related disorders. However, the relative contribution of different estrogen-receptor (ER) isoforms in these associations still awaits examination. Objectives The present study explored the effects of ER-α and ER-β stimulation or blockade on PPI and their functional relevance in an amphetamine-induced PPI deficiency model in male mice. Methods Prior to the assessment of PPI, C57BL/6N male mice were injected with the ER-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), the ER-α antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1N-pyrozole dihydrochloride (MPP), the ER-β agonist 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN), or the ER-β antagonist 4-[2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyrimidin-3-yl] phenol (PHTPP), with or without concomitant amphetamine treatment. Results Acute pharmacological stimulation and blockade of ER-α, respectively, led to a dose-dependent increase and decrease in basal PPI. In contrast, acute treatment with preferential ER-β modulators spared PPI under basal conditions. Pretreatment with either ER-α or ER-β agonist was, however, effective in blocking amphetamine-induced PPI disruption. Conclusions Our study demonstrates that activation of either ER isoform is capable of modulating dopamine-dependent PPI levels. At the same time, our results suggest that endogenous ER-α signaling may be more relevant than ER-β in the regulation of sensorimotor gating under basal conditions.ISSN:0033-3158ISSN:1432-207

    Long-term pathological consequences of prenatal infection: beyond brain disorders

    Full text link
    Prenatal immunological adversities such as maternal infection have been widely acknowledged to contribute to an increased risk of neurodevelopmental brain disorders. In recent years, epidemiological and experimental evidence has accumulated to suggest that prenatal exposure to immune challenges can also negatively affect various physiological and metabolic functions beyond those typically associated with primary defects in CNS development. These peripheral changes include excessive accumulation of adipose tissue and increased body weight, impaired glycemic regulation and insulin resistance, altered myeloid lineage development, increased gut permeability, hyperpurinergia, and changes in microbiota composition. Experimental work in animal models further suggests that at least some of these peripheral abnormalities could directly contribute to CNS dysfunctions, so that normalization of peripheral pathologies could lead to an amelioration of behavioral deficits. Hence, seemingly unrelated central and peripheral effects of prenatal infection could represent interrelated pathological entities that emerge in response to a common developmental stressor. Targeting peripheral abnormalities may thus represent a valuable strategy to improve the wide spectrum of behavioral abnormalities that can emerge in subjects with prenatal infection histories

    GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging

    No full text
    Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a 'one-size-fits-all' sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. Molecular specificity, sensor kinetics, spectral properties, brightness, sensor scaffold and pharmacology can further influence sensor choice depending on the experimental question. In this review, we use DA as an example; we briefly summarize old and new techniques to monitor DA release, including DA biosensors. We then outline a map of DA heterogeneity across the brain and provide a guide for optimal sensor choice and implementation based on local DA levels and other experimental parameters. Altogether this review should act as a tool to guide DA sensor choice for end-users.ISSN:1422-006

    MicroRNA expression profiling in the prefrontal cortex: putative mechanisms for the cognitive effects of adolescent high fat feeding

    Get PDF
    The medial prefrontal cortex (mPFC), master regulator of higher-order cognitive functions, is the only brain region that matures until late adolescence. During this period, the mPFC is sensitive to stressful events or suboptimal nutrition. For instance, high-fat diet (HFD) feeding during adolescence markedly impairs prefrontal-dependent cognition. It also provokes multiple changes at the cellular and synaptic scales within the mPFC, suggesting that major transcriptional events are elicited by HFD during this maturational period. The nature of this transcriptional reprogramming remains unknown, but may include epigenetic processes, in particular microRNAs, known to directly regulate synaptic functions. We used high–throughput screening in the adolescent mouse mPFC and identified 38 microRNAs differentially regulated by HFD, in particular mir-30e-5p. We used a luciferase assay to confirm the functional effect of mir-30e-5p on a chosen target: Ephrin-A3. Using global pathway analyses of predicted microRNA targets, we identified biological pathways putatively affected by HFD. Axon guidance was the top-1 pathway, validated by identifying gene expression changes of axon guidance molecules following HFD. Our findings delineate major microRNA transcriptional reprogramming within the mPFC induced by adolescent HFD. These results will help understanding the contribution of microRNAs in the emergence of cognitive deficits following early-life environmental events

    Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders

    Get PDF
    Prenatal exposure to maternal infection increases the risk of neurodevelopmental disorders, including schizophrenia and autism. The molecular processes underlying this pathological association, however, are only partially understood. Here, we combined unbiased genome-wide transcriptional profiling with follow-up epigenetic analyses and structural magnetic resonance imaging to explore convergent molecular and neuromorphological alterations in corticostriatal areas of adult offspring exposed to prenatal immune activation. Genome-wide transcriptional profiling revealed that prenatal immune activation caused a differential expression of 116 and 251 genes in the medial prefrontal cortex and nucleus accumbens, respectively. A large part of genes that were commonly affected in both brain areas were related to myelin functionality and stability. Subsequent epigenetic analyses indicated that altered DNA methylation of promoter regions might contribute to the differential expression of myelin-related genes. Quantitative relaxometry comparing T1, T2, and myelin water fraction revealed sparse increases in T1 relaxation times and consistent reductions in T2 relaxation times. Together, our multi-system approach demonstrates that prenatal viral-like immune activation causes myelin-related transcriptional and epigenetic changes in corticostriatal areas. Even though these abnormalities do not seem to be associated with overt white matter reduction, they may provide a molecular mechanism whereby prenatal infection can impair myelin functionality and stability.ISSN:1047-3211ISSN:1460-219
    corecore