10,062 research outputs found

    An Automatic Evaluation of the WMT22 General Machine Translation Task

    Full text link
    This report presents an automatic evaluation of the general machine translation task of the Seventh Conference on Machine Translation (WMT22). It evaluates a total of 185 systems for 21 translation directions including high-resource to low-resource language pairs and from closely related to distant languages. This large-scale automatic evaluation highlights some of the current limits of state-of-the-art machine translation systems. It also shows how automatic metrics, namely chrF, BLEU, and COMET, can complement themselves to mitigate their own limits in terms of interpretability and accuracy.Comment: Update: correction, fr->de and de-> tables were switche

    Conditional vorticity budget of coherent and incoherent flow contributions in fully developed homogeneous isotropic turbulence

    Full text link
    We investigate the conditional vorticity budget of fully developed three-dimensional homogeneous isotropic turbulence with respect to coherent and incoherent flow contributions. The Coherent Vorticity Extraction based on orthogonal wavelets allows to decompose the vorticity field into coherent and incoherent contributions, of which the latter are noise-like. The impact of the vortex structures observed in fully developed turbulence on statistical balance equations is quantified considering the conditional vorticity budget. The connection between the basic structures present in the flow and their statistical implications is thereby assessed. The results are compared to those obtained for large- and small-scale contributions using a Fourier decomposition, which reveals pronounced differences

    How to improve robustness in Kohonen maps and display additional information in Factorial Analysis: application to text mining

    Full text link
    This article is an extended version of a paper presented in the WSOM'2012 conference [1]. We display a combination of factorial projections, SOM algorithm and graph techniques applied to a text mining problem. The corpus contains 8 medieval manuscripts which were used to teach arithmetic techniques to merchants. Among the techniques for Data Analysis, those used for Lexicometry (such as Factorial Analysis) highlight the discrepancies between manuscripts. The reason for this is that they focus on the deviation from the independence between words and manuscripts. Still, we also want to discover and characterize the common vocabulary among the whole corpus. Using the properties of stochastic Kohonen maps, which define neighborhood between inputs in a non-deterministic way, we highlight the words which seem to play a special role in the vocabulary. We call them fickle and use them to improve both Kohonen map robustness and significance of FCA visualization. Finally we use graph algorithmic to exploit this fickleness for classification of words

    Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continuous solid-gas biofilter

    Get PDF
    The irreversible hydrolysis of 1-chlorobutane to 1-butanol and HCl by lyophilized cells of Rhodococcus erythropolis NCIMB 13064, using a solid–gas biofilter, is described as a model reaction. 1-Chlorobutane is hydrolyzed by the haloalkane dehalogenase from R. erythropolis. A critical water thermodynamic activity (aw ) of 0.4 is necessary for the enzyme to become active and optimal dehalogenase activity for the lyophilized cells is obtained for a aw of 0.9. A temperature of reaction of 40 ◦ C represents the best compromise between stability and activity. The activation energy of the reaction was determined and found equal to 59.5 kJ/mol. The absence of internal diffusional limitation of substrates in the biofilter was observed. The apparent Michaelis–Menten constants Km and Vmax for the lyophilized cells of R. erythropolis were 0.011 (1-chlorobutane thermodynamic activity, aClBut ) and 3.22 µmoles/min g of cell, respectively. The activity and stability of lyophilized cells were dependent on the quantity of HCl produced. Since possible modifications of local pH by the HCl product, pH control by the addition of volatile Lewis base (triethylamine) in the gaseous phase was employed. Triethylamine plays the role of a volatile buffer that controls local pH and the ionization state of the dehalogenase and prevents inhibition by Cl− . Finally, cells broken by the action of the lysozyme, were more stable than intact cells and more active. An initial reaction rate equal to 4.5 µmoles/min g of cell was observed

    Understanding the Imprinting Mechanism of UBE3A for Therapeutic Intervention

    Get PDF
    Human chromosome 15q11-q13 contains a cluster of imprinted genes that are associated with a number of neurological disorders that exhibit non-Mendelian patterns of inheritance, such as Angelman syndrome (AS) and Prader-Willi syndrome. Angelman syndrome is caused by the loss-of-expression of maternally inherited ubiquitin E3A protein ligase gene (UBE3A). Prader-Willi syndrome is caused by loss-of-function of paternally inherited SNORD116 snoRNAs (small nucleolar RNAs), which are expressed as part of a long polycistronic transcriptional unit (PTU) comprised of SNURF-SNRPN, additional orphan C/D box snoRNA clusters, and the UBE3A antisense transcript (UBE3A-AS). The full-length transcript of PTU, including UBE3A-AS, is only expressed in neurons causing the imprinting of paternal UBE3A. Why this occurs in only neurons remains largely unknown. Furthermore, this neuron-specific imprinting adds additional difficulty for therapeutic intervention. In this dissertation, the imprinting mechanism of UBE3A is examined in detail, while an alternative high-throughput screening (HTS) method for drug discovery in neurons is developed. A combination of bioinformatic and molecular analysis of the human and mouse PTU revealed that UBE3A-AS/Ube3a-AS is extensively processed via 5’ capping 3’polyadenyation and alternative splicing, suggesting that the antisense may have regulatory functions apart from imprinting UBE3A in neurons. Following this discovery, the transcriptional profiles and processing of mouse paternal Ube3a was investigated as literature suggested that imprinted paternal Ube3a, unlike other imprinted genes, was transcribed up to intron 4. This analysis unveiled a fourth Ube3a isoform that terminates within intron 4. Moreover, expression of this isoform correlated with Ube3a-AS expression, suggesting alternative reasons for the imprinting of Ube3a. In addition to the analysis of the imprinting of Ube3a, an alternative solution for drug discovery for central nervous system disorders was developed and validated. Here, an embryonic stem cell-derived neuronal culture system was developed for HTS and tested using the paternal Ube3a^Y FP reporter cell-line. Using a known reactivator of paternal Ube3a, Topotecan - a topoisomerase inhibitor, as a positive control a proof-of-concept study demonstrated the utility of this method for HTS drug discovery. Collectively, these results advance the field and understanding of antisense lncRNAs and provide a versatile tool for drug discovery for neurological disorders

    Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability

    Get PDF
    Five bacterial strains were compared for halogenated compounds conversion in aqueous media. Depending on the strain, the optimal temperature for dehalogenase activity of resting cells varied from 30 to 45 degrees C, while optimal pH raised from 8.4 to 9.0. The most effective dehalogenase activity for 1 chlorobutane conversion was detected with Rhodococcus erythropolis NCIMB13064 and Escherichia coli BL21 (DE3) (DhaA). The presence of 2-chlorobutane or propanal in the aqueous media could inhibit the 1-chlorobutane transformation

    Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.

    Get PDF
    Microbial anodes were formed from compost leachate on carbon cloth electrodes. The biofilms formed at the surface of electrodes kept at open circuit contained microorganisms that switched their metabolism towards electrode respiration in response to a few minutes of polarisation. When polarisation at -0.2 V/SCE (+0.04 V/SHE) was applied to a pre-established biofilm formed at open circuit (delayed polarisation), the bacteria developed an extracellular electron transport network that showed multiple redox systems, reaching 9.4 A/m(2) after only 3-9 days of polarisation. In contrast, when polarisation was applied from the beginning, bacteria developed a well-tuned extracellular electron transfer network concomitantly with their growth, but 36 days of polarisation were required to get current of the same order (6-8 A/m(2)). The difference in performance was attributed to the thinner, more heterogeneous structure of the biofilms obtained by delayed polarisation compared to the thick uniform structure obtained by full polarisation
    corecore