36 research outputs found

    Analysis of the Fibroblast Growth Factor System Reveals Alterations in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis

    FGFR4 signaling is a necessary step in limb muscle differentiation.

    No full text
    International audienceIn chick embryos, most if not all, replicating myoblasts present within the skeletal muscle masses express high levels of the FGF receptor FREK/FGFR4, suggesting an important role for this molecule during myogenesis. We examined FGFR4 function during myogenesis, and we demonstrate that inhibition of FGFR4, but not FGFR1 signaling, leads to a dramatic loss of limb muscles. All muscle markers analyzed (such as Myf5, MyoD and the embryonic myosin heavy chain) are affected. We show that inhibition of FGFR4 signal results in an arrest of muscle progenitor differentiation, which can be rapidly reverted by the addition of exogenous FGF, rather than a modification in their proliferative capacities. Conversely, over-expression of FGF8 in somites promotes FGFR4 expression and muscle differentiation in this tissue. Together, these results demonstrate that in vivo, myogenic differentiation is positively controlled by FGF signaling, a notion that contrasts with the general view that FGF promotes myoblast proliferation and represses myogenic differentiation. Our data assign a novel role to FGF8 during chick myogenesis and demonstrate that FGFR4 signaling is a crucial step in the cascade of molecular events leading to terminal muscle differentiation
    corecore