15 research outputs found

    14-3-3θ, AF4 and MLL-AF4 are targets of MiR-27a in t(4;11) acute lymphoblastic leukemia: implication for new targeted therapy options

    Get PDF
    The t(4;11)(q21;q23) chromosomal translocation results in the KMT2A/AFF1 fusion gene, which encodes the mixed-lineage leukemia (MLL)-AF4 oncogenic chimera, a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL). In t(4;11) ALL, MLL-AF4 recruits the endogenous co-activator AF4 and aberrantly triggers transcription of MLL target genes, including HOXA9 and MEIS1, thereby driving transformation of hematopoietic progenitors. We previously demonstrated that the scaffold protein 14-3-3θ is a direct interactor of AF4 and promotes AF4 binding to the HOXA9 promoter. Notably, 14-3-3θ is a target of MiR-27a, which acts as tumor suppressor in various human leukemias; moreover, expression levels of MiR-27a correlate with relapse free survival in childhood ALL. This PhD thesis aims to assess the potential role of MiR-27a in t(4;11) ALL pathogenesis. In different leukemia cell lines, we found an inverse correlation between levels of MiR-27a and 14-3-3θ, which was particularly relevant in t(4;11) cell lines. In t(4;11) leukemia cells, transient transfection of MiR-27a led to a decrease in 14-3-3θ protein amount and HOXA9, HOXA7 and MEIS1 transcription. Interestingly, our bioinformatic analysis predicted that AFF1-3’UTR, which is shared with KMT2A/AFF1, contains a putative MiR-27a seed sequence. Consistently, MiR-27a overexpression strongly reduced AF4 and MLL-AF4 protein levels, as well as protein level of RUNX1, a known target of MiR-27a with a key role in t(4;11) leukemia context. We therefore cloned AFF1-3’-UTR in an opportune plasmid vector and performed a luciferase reporter assay. The decreased luciferase activity we measured after co-transfection of MiR-27a and the recombinant plasmid proved that AFF1-3’UTR is a direct target of MiR-27a. Accordingly, transfection of anti-MiR-27a enhanced the expression of AF4 protein, in RS4;11 cells. Moreover, ChIP experiments gave direct proof that MiR-27a overexpression impaired MLL-AF4 binding to HOXA9 promoter. Consistently, MiR-27a overexpression decreased viability, proliferation and clonogenicity of t(4;11) cells, whereas enhanced their apoptotic rate. Lastly, we found that relative expression of MiR-27a was significantly lower in 9 patients affected by severe t(4;11) ALL compared with 9 patients affected by t(12;21) leukemia, which has a benign prognosis. Similarly to the t(4;11) cell lines, in our ALL patients we found an inverse relationship between MiR-27a and 14-3-3θ transcript levels. Overall, we demonstrate that MiR-27a has a pivotal role in t(4;11) ALL molecular pathogenesis and therefore it is a promising novel target for the therapy of this aggressive form of leukemia

    The position of nonsense mutations can predict the phenotype severity : A survey on the DMD gene

    Get PDF
    A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used theDMDgene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, theDMDgene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, becauseDMDmutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5' nonsense mutations, if reinitiation can occur, or due to late 3' nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.Peer reviewe

    Mystery(n) Phenotypic Presentation in Europeans: Report of Three Further Novel Missense RNF213 Variants Leading to Severe Syndromic Forms of Moyamoya Angiopathy and Literature Review

    Get PDF
    Moyamoya angiopathy (MMA) is a rare cerebral vasculopathy in some cases occurring in children. Incidence is higher in East Asia, where the heterozygous p.Arg4810Lys variant in RNF213 (Mysterin) represents the major susceptibility factor. Rare variants in RNF213 have also been found in European MMA patients with incomplete penetrance and are today a recognized susceptibility factor for other cardiovascular disorders, from extracerebral artery stenosis to hypertension. By whole exome sequencing, we identified three rare and previously unreported missense variants of RNF213 in three children with early onset of bilateral MMA, and subsequently extended clinical and radiological investigations to their carrier relatives. Substitutions all involved highly conserved residues clustered in the C-terminal region of RNF213, mainly in the E3 ligase domain. Probands showed a de novo occurring variant, p.Phe4120Leu (family A), a maternally inherited heterozygous variant, p.Ser4118Cys (family B), and a novel heterozygous variant, p.Glu4867Lys, inherited from the mother, in whom it occurred de novo (family C). Patients from families A and C experienced transient hypertransaminasemia and stenosis of extracerebral arteries. Bilateral MMA was present in the proband's carrier grandfather from family B. The proband from family C and her carrier mother both exhibited annular figurate erythema. Our data confirm that rare heterozygous variants in RNF213 cause MMA in Europeans as well as in East Asian populations, suggesting that substitutions close to positions 4118-4122 and 4867 of RNF213 could lead to a syndromic form of MMA showing elevated aminotransferases and extracerebral vascular involvement, with the possible association of peculiar skin manifestations

    Neurofibromatosis Type 1: Pediatric Aspects and Review of Genotype–Phenotype Correlations

    No full text
    Neurofibromatosis type 1 (NF1) is an autosomal dominant condition, with a birth incidence of approximately 1:2000–3000, caused by germline pathogenic variants in NF1, a tumor suppressor gene encoding neurofibromin, a negative regulator of the RAS/MAPK pathway. This explains why NF1 is included in the group of RASopathies and shares several clinical features with Noonan syndrome. Here, we describe the main clinical characteristics and complications associated with NF1, particularly those occurring in pediatric age. NF1 has complete penetrance and shows wide inter- and intrafamilial phenotypic variability and age-dependent appearance of manifestations. Clinical presentation and history of NF1 are multisystemic and highly unpredictable, especially in the first years of life when penetrance is still incomplete. In this scenario of extreme phenotypic variability, some genotype–phenotype associations need to be taken into consideration, as they strongly impact on genetic counseling and prognostication of the disease. We provide a synthetic review, based on the most recent literature data, of all known genotype–phenotype correlations from a genetic and clinical perspective. Molecular diagnosis is fundamental for the confirmation of doubtful clinical diagnoses, especially in the light of recently revised diagnostic criteria, and for the early identification of genotypes, albeit few, that correlate with specific phenotypes

    Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation

    No full text
    The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia

    Nuclear FGFR2 Interacts with the MLL-AF4 Oncogenic Chimera and Positively Regulates HOXA9 Gene Expression in t(4;11) Leukemia Cells

    No full text
    The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera’s aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia

    MiR‐27a downregulates 14‐3‐3θ, RUNX1, AF4, and MLL‐AF4, crucial drivers of blast transformation in t(4;11) leukemia cells

    No full text
    The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia

    Linked-Read Whole Genome Sequencing Solves a Double DMD Gene Rearrangement

    Get PDF
    Next generation sequencing (NGS) has changed our approach to diagnosis of genetic disorders. Nowadays, the most comprehensive application of NGS is whole genome sequencing (WGS) that is able to detect virtually all DNA variations. However, even after accurate WGS, many genetic conditions remain unsolved. This may be due to the current NGS protocols, based on DNA fragmentation and short reads. To overcome these limitations, we applied a linked-read sequencing technology that combines single-molecule barcoding with short-read WGS. We were able to assemble haplotypes and distinguish between alleles along the genome. As an exemplary case, we studied the case of a female carrier of X-linked muscular dystrophy with an unsolved genetic status. A deletion of exons 16–29 in DMD gene was responsible for the disease in her family, but she showed a normal dosage of these exons by Multiplex Ligation-dependent Probe Amplification (MLPA) and array CGH. This situation is usually considered compatible with a “non-carrier” status. Unexpectedly, the girl also showed an increased dosage of flanking exons 1–15 and 30–34. Using linked-read WGS, we were able to distinguish between the two X chromosomes. In the first allele, we found the 16–29 deletion, while the second allele showed a 1–34 duplication: in both cases, linked-read WGS correctly mapped the borders at single-nucleotide resolution. This duplication in trans apparently restored the normal dosage of exons 16–29 seen by quantitative assays. This had a dramatic impact in genetic counselling, by converting a non-carrier into a double carrier status prediction. We conclude that linked-read WGS should be considered as a valuable option to improve our understanding of unsolved genetic conditions

    Alu-Mediated Insertions in the DMD Gene: A Difficult Puzzle to Interpret Clinically

    No full text
    Abstract: Disrupting variants in the DMD gene are associated with Duchenne or Becker muscular dystrophy (DMD/BMD) or with hyperCKemia, all of which present very different degrees of clinical severity. The clinical phenotypes of these disorders could not be distinguished in infancy or early childhood. Accurate phenotype prediction based on DNA variants may therefore be required in addition to invasive tests, such as muscle biopsy. Transposon insertion is one of the rarest mutation types. Depending on their position and characteristics, transposon insertions may affect the quality and/or quantity of dystrophin mRNA, leading to unpredictable alterations in gene products. Here, we report the case of a three-year-old boy showing initial skeletal muscle involvement in whom we characterized a transposon insertion (Alu sequence) in exon 15 of the DMD gene. In similar cases, the generation of a null allele is predicted, resulting in a DMD phenotype. However, mRNA analysis of muscle biopsy tissue revealed skipping of exon 15, which restored the reading frame, thus predicting a milder phenotype. This case is similar to very few others already described in the literature. This case further enriches our knowledge of the mechanisms perturbing splicing and causing exon skipping in DMD, helping to properly guide clinical diagnosi

    A novel MEIS2 mutation explains the complex phenotype in a boy with a typical NF1 microdeletion syndrome

    No full text
    Concurrence of distinct genetic conditions in the same patient is not rare. Several cases involving neurofibromatosis type 1 (NF1) have recently been reported, indicating the need for more extensive molecular analysis when phenotypic features cannot be explained by a single gene mutation. Here, we describe the clinical presentation of a boy with a typical NF1 microdeletion syndrome complicated by cleft palate and other dysmorphic features, hypoplasia of corpus callosum, and partial bicoronal craniosynostosis caused by a novel 2bp deletion in exon 2 of Meis homeobox 2 gene (MEIS2) inherited from the mildly affected father. This is only the second case of an inherited MEIS2 intragenic mutation reported to date. MEIS2 is known to be associated with cleft palate, intellectual disability, heart defects, and dysmorphic features. Our clinical report suggests that this gene may also have a role in cranial morphogenesis in humans, as previously observed in animal models
    corecore