64 research outputs found

    Microbiota and Obesity: Where Are We Now?

    Get PDF
    Simple Summary Emerging new data reported in the international scientific literature show that specific alterations in the human gut microbiota are characteristic in obesity and obesity-related metabolic diseases. Obesity is conditioned by a multitude of factors, and the microbiota is certainly an important player. The analysis of the data obtained from experimental studies allow us to hypothesize that changes in the composition of the microbiota may be the cause, and not simply the consequence, of alterations in human metabolism. Clinical trials on wide samples that investigate the role of diet-induced modulation of the gut microbiota on the host metabolism are needed to understand the interactions at the molecular level for the observed correlations between metabolism and microbiota changes. Abstract Genetic and environmental factors are underlying causes of obesity and other metabolic diseases, so it is therefore difficult to find suitable and effective medical treatments. However, without a doubt, the gut microbiota—and also the bacteria present in the oral cavity—act as key factors in the development of these pathologies, yet the mechanisms have not been fully described. Certainly, a more detailed knowledge of the structure of the microbiota—composition, intra- and inter-species relationships, metabolic functions—could be of great help in counteracting the onset of obesity. Identifying key bacterial species will allow us to create a database of “healthy” bacteria, making it possible to manipulate the bacterial community according to metabolic and clinical needs. Targeting gut microbiota in clinical care as treatment for obesity and health-related complications—even just for weight loss has become a real possibility. In this topical review we provide an overview of the role of the microbiota on host energy homeostasis and obesity-related metabolic diseases, therefore addressing the therapeutic potential of novel and existing strategies (impact of nutrition/dietary modulation, and fecal microbiota transplantation) in the treatment of metabolic disease

    The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine

    Get PDF
    he human intestine is colonized by a huge number of microorganisms from the moment of birth. This set of microorganisms found throughout the human body, is called the microbiota; the microbiome indicates the totality of genes that the microbiota can express, i.e., its genetic heritage. Thus, microbiota participates in and influences the proper functioning of the organism. The microbiota is unique for each person; it differs in the types of microorganisms it contains, the number of each microorganism, and the ratio between them, but mainly it changes over time and under the influence of many factors. Therefore, the correct functioning of the human body depends not only on the expression of its genes but also on the expression of the genes of the microorganisms it coexists with. This fact makes clear the enormous interest of community science in studying the relationship of the human microbiota with human health and the incidence of disease. The microbiota is like a unique personalized “mold” for each person; it differs quantitatively and qualitatively for the microorganisms it contains together with the relationship between them, and it changes over time and under the influence of many factors. We are attempting to modulate the microbial components in the human intestinal microbiota over time to provide positive feedback on the health of the host, from intestinal diseases to cancer. These interventions to modulate the intestinal microbiota as well as to identify the relative microbiome (genetic analysis) can range from dietary (with adjuvant prebiotics or probiotics) to fecal transplantation. This article researches the recent advances in these strategies by exploring their advantages and limitations. Furthermore, we aim to understand the relationship between intestinal dysbiosis and pathologies, through the research of resident microbiota, that would allow the personalization of the therapeutic antibiotic strategy

    Diagnostic Accuracy of a New Antigen Test for SARS-CoV-2 Detection

    Get PDF
    Background and aims: Quick and reliable diagnostic tools play an important role in controlling the spread of the SARS-Cov-2 pandemic. The aim of this study was to evaluate the diagnostic accuracy of a new cyto-salivary antigen test aimed at detecting the presence of antigens for SARS-CoV-2, as compared by the gold standard RT-PCR and a lateral flow test. Methods: A total of 433 healthy volunteers were enrolled in the study and the sensitivity and specificity of the new cyto-salivary antigen test were calculated, as compared to the RT-PCR nasopharyngeal swab and to the lateral flow test. Results: A total of 433 samples were collected and tested at the Mediterranean Fair in Palermo from February 2021 until April 2021. The new cyto-salivary antigen had a sensitivity of 100% and a specificity of 94.2%. The sensitivity and the specificity of the lateral flow test were 55% and 100%, respectively. Conclusions: The new cyto-salivary antigen test detected more positive cases than the RT-PCR in a sample of asymptomatic subjects, demonstrating to be a promising tool for a more sensitive diagnosis of COVID-19. Further studies are warranted to better characterize its diagnostic accuracy

    SARS-CoV-2 induced myocarditis: Current knowledge about its molecular and pathophysiological mechanisms

    Get PDF
    The existence of an inflammatory process in the heart muscle, related to a progressive worsening of myocardial function, different etiopathogenetic mechanisms concur and often overlap, thus making the diagnosis and the therapeutic approach complex. As the COVID-19 pandemic progresses, the effects of the disease on the organ systems and in particular on the cardiovascular system are becoming more and more profound. Cardiac involvement is a well-known event with a high percentage of findings in the heart’s magnetic field, even in asymptomatic areas. There are numerous uncertainties regarding their evolution, in the long and short term, due not only to a difficult to determine the varied clinical expression and the rarely performed intramyocardial biopsy which additionally presents diagnostic problems but also in part to different clinical prognosis. Today, the new SARS-CoV-2 virus that uses the angiotensin converting enzyme 2 (ACE2) which is present at high levels in myocardial cells as its entrance it can create even severe heart injury. The pathophysiology in all of these cases can involve multiple immune and non-immune mechanisms within organs and vessels and can be occur in the clinical phases. Possible mechanisms of direct and indirect myocardial infarction in patients with COVID-19 include additional lesion and oxygen-rich and generalized inflammation response with myocardial immune hyperactivity (myocarditis). Therefore, these can occur through the excessive release of cytokines, the presence of thrombocytopenia, endocrine damage, heart failure, arrhythmias and more. Patients can show average signs of myocardial damage, and some develop spontaneous cardiac complications, such as heart failure, arrhythmias and, rarely, rare cardiogenic disorders. Pathophysiology in all of these may involve multiple mechanisms within the cytokine cephalic membrane, endocrine damage and thrombogenicity. The diagnosis of this myocardial injuri is mainly based on the myocardial enzyme troponin. This viewpoint paper explains today’s knowledge on viral myocarditis, in particular that from SARS-CoV-2 infection, if there is a connection with other possible biomolecular pathogenetic factors that can influence its natural course. In fact, it is for this reason that the pathogenetic mechanisms are analyzed and described. At the same time, its possible interaction with other parameters that are documented risk factors for cardiovascular disease was examined. Although these biomolecular findings were mainly related to necrotic parts of the myocardium, it is important to recognize that myocardial damage early for a better approach and prognosis

    H9c2 Cardiomyocytes under Hypoxic Stress: Biological Effects Mediated by Sentinel Downstream Targets

    Get PDF
    The association between diabetes and cardiovascular diseases is well known. Related diabetes macro- and microangiopathies frequently induce hypoxia and consequently energy failure to satisfy the jeopardized myocardium basal needs. Additionally, it is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity, resulting in diminished nitric oxide (NO) bioavailability and consequent endothelial cell dysfunction. In this study, we analyzed the embryonic heart-derived H9c2 cell response to hypoxic stress after administration of a high glucose concentration to reproduce a condition often observed in diabetes. We observed that 24 h hypoxia exposure of H9c2 cells reduced cell viability compared to cells grown in normoxic conditions. Cytotoxicity and early apoptosis were increased after exposure to high glucose administration. In addition, hypoxia induced a RhoA upregulation and a Bcl-2 downregulation and lowered the ERK activation observed in normoxia at both glucose concentrations. Furthermore, a significant cell proliferation rate increases after the 1400W iNOS inhibitor administration was observed. Again, hypoxia increased the expression level of myogenin, a marker of skeletal muscle cell differentiation. The cardiomyocyte gene expression profiles and morphology changes observed in response to pathological stimuli, as hypoxia, could lead to improper ventricular remodeling responsible for heart failure. Therefore, understanding cell signaling events that regulate cardiac response to hypoxia could be useful for the discovery of novel therapeutic approaches able to prevent heart diseases

    Peripheral Purinergic Modulation in Pediatric Orofacial Inflammatory Pain Affects Brainstem Nitroxidergic System: A Translational Research

    Get PDF
    Physiology of orofacial pain pathways embraces primary afferent neurons, pathologic changes in the trigeminal ganglion, brainstem nociceptive neurons, and higher brain function regulating orofacial nociception. The goal of this study was to investigate the nitroxidergic system alteration at brainstem level (spinal trigeminal nucleus), and the role of peripheral P2 purinergic receptors in an experimental mouse model of pediatric inflammatory orofacial pain, to increase knowledge and supply information concerning orofacial pain in children and adolescents, like pediatric dentists and pathologists, as well as oro-maxillo-facial surgeons, may be asked to participate in the treatment of these patients. The experimental animals were treated subcutaneously in the perioral region with pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), a P2 receptor antagonist, 30 minutes before formalin injection. The pain-related behavior and the nitroxidergic system alterations in the spinal trigeminal nucleus using immunohistochemistry and western blotting analysis have been evaluated. The local administration of PPADS decreased the face-rubbing activity and the expression of both neuronal and inducible nitric oxide (NO) synthase isoforms in the spinal trigeminal nucleus. These results underline a relationship between orofacial inflammatory pain and nitroxidergic system in the spinal trigeminal nucleus and suggest a role of peripheral P2 receptors in trigeminal pain transmission influencing NO production at central level. In this way, orofacial pain physiology should be elucidated and applied to clinical practice in the futur

    Aggressiveness pattern and second primary tumor risk associated with basaloid squamous cell carcinoma of the larynx

    Get PDF
    Basaloid squamous cell carcinoma (BSCC) is a rare, aggressive and distinct variant of squamous cell carcinoma (SCC) of the upper respiratory and digestive tract. We have evaluated disease specific survival (DSS) and overall survival (OS) through Kaplan-Meier method and mortality risk through univariate statistical analysis of Cox in 42 cases of BSCC and other 42 of laryngeal SCC (LSCC) matched for both age and sex. We demonstrated that laryngeal BSCC is a more aggressive tumor than LSCC as is associated to higher nodal recurrence of pathology (5 vs 2 patients, median survival, OR 2.7), a reduced survival (median survival 34 vs 40 months, OR 3.2 for mortality); in addition, basaloid patients have a higher risk to be affected by second primary tumors (13 vs 3 patients, OR 5.8) and a higher probability to die for this second tumor (Hazard Risk, HR 4.4). The analysis of survival shows an increased mortality risk concurrent with the parameters assessed by univariate analyses that assume a predictive and statistical significance in second tumor and grading in basaloid LSSC.Basaloid squamous cell carcinoma (BSCC) is a rare, aggressive and distinct variant of squamous cell carcinoma (SCC) of the upper respiratory and digestive tract. We have evaluated disease specific survival (DSS) and overall survival (OS) through Kaplan-Meier method and mortality risk through univariate statistical analysis of Cox in 42 cases of BSCC and other 42 of laryngeal SCC (LSCC) matched for both age and sex. We demonstrated that laryngeal BSCC is a more aggressive tumor than LSCC as is associated to higher nodal recurrence of pathology (5 vs 2 patients, median survival, OR 2.7), a reduced survival (median survival 34 vs 40 months, OR 3.2 for mortality); in addition, basaloid patients have a higher risk to be affected by second primary tumors (13 vs 3 patients, OR 5.8) and a higher probability to die for this second tumor (Hazard Risk, HR 4.4). The analysis of survival shows an increased mortality risk concurrent with the parameters assessed by univariate analyses that assume a predictive and statistical significance in second tumor and grading in basaloid LSSC

    The Role of Curcumin in Prostate Cancer Cells and Derived Spheroids

    Get PDF
    A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially avail- able nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moder- ate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids

    Anti-cancer activity of dose-fractioned mPE +/- bevacizumab regimen is paralleled by immune-modulation in advanced squamous NSLC patients

    Get PDF
    Background: Results from the BEVA2007 trial, suggest that the metronomic chemotherapy regimen with dose-fractioned cisplatin and oral etoposide (mPE) +/- bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), shows anti-angiogenic and immunological effects and is a safe and active treatment for metastatic non-small cell lung cancer (mNSCLC) patients. We carried out a retrospective analysis aimed to evaluate the antitumor effects of this treatment in a subset of patients with squamous histology. Methods: Retrospective analysis was carried out in a subset of 31 patients with squamous histology enrolled in the study between September 2007 and September 2015. All of the patients received chemotherapy with cisplatin (30 mg/sqm, days 1-3q21) and oral etoposide (50 mg, days 1-15q21) (mPE) and 14 of them also received bevacizumab 5 mg/kg on the day 3q21 (mPEBev regimen). Results: This treatment showed a disease control rate of 71% with a mean progression free survival (PFS) and overall survival (OS) of 13.6 and 17 months respectively. After 4 treatment courses, 6 patients showing a remarkable tumor shrinkage, underwent to radical surgery, attaining a significant advantage in term of survival (P=0.048). Kaplan-Meier and log-rank test identified the longest survival in patients presenting low baseline levels in neutrophil-to-lymphocyte ratio (NLR) (P=0.05), interleukin (IL) 17A (P=0.036), regulatory-T-cells (Tregs) (P=0.020), and activated CD83+ dendritic cells (DCs) (P=0.03). Conclusions: These results suggest that the mPE +/- bevacizumab regimen is feasible and should be tested in comparative trials in advanced squamous-NSCLC (sqNSCLC). Moreover, its immune-biological effects strongly suggest the investigation in sequential combinations with immune check-point inhibitors
    • …
    corecore